A Global Optimization Algorithm for Buffer and Splitter Insertion in Adiabatic Quantum-Flux-Parametron Circuits

Abstract

As a highly energy-efficient application of low-temperature superconductivity, the adiabatic quantum-flux-parametron (AQFP) logic circuit has characteristics of extremely low-power consumption, making it an attractive candidate for extremely energy-efficient computing systems. Since logic gates are driven by the alternating current (AC) serving as the clock signal in AQFP circuits, plenty of AQFP buffers are required to ensure that the dataflow is synchronized at all logic levels of the circuit. Meanwhile, since the currently developed AQFP logic gates can only drive a single output, splitters are required by logic gates to drive multiple fan-outs. These gates take up a significant amount of the circuit’s area and delay. This paper proposes a global optimization algorithm for buffer and splitter (B/S) insertion to address the issues above. The B/S insertion is first identified as a combinational optimization problem, and a dynamic programming formulation is presented to find the global optimal solution. Due to the limitation of its impractical search space, an integer linear programming formulation is proposed to explore the global optimization of B/S insertion approximately. Experimental results on the ISCAS'85 and simple arithmetic benchmark circuits show the effectiveness of the proposed method, with an average reduction of 8.22% and 7.37% in the number of buffers and splitters inserted compared to the state-of-the-art methods from ICCAD'21 and DAC'22, respectively.

Publication
Proceedings of the 28th Asia and South Pacific Design Automation Conference