
SeDA: Secure and Efficient DNN Accelerators with
Hardware/Software Synergy

Wei Xuan†‡, Zhongrui Wang⋆, Lang Feng§, Ning Lin¶, Zihao Xuan†‡, Rongliang Fu∥,
Tsung-Yi Ho∥, Yuzhong Jiao†‡, Luhong Liang†‡

†ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong Kong, China
‡The Hong Kong University of Science and Technology, Hong Kong, China

⋆Southern University of Science and Technology, Shenzhen, Guangdong, China
§Sun Yat-sen University Shenzhen Campus, Shenzhen, Guangdong, China

¶The University of Hong Kong, Hong Kong, China
∥The Chinese University of Hong Kong, Hong Kong, China

Corresponding authors: wangzr@sustech.edu.cn, flang1994@outlook.com

Abstract—Ensuring the confidentiality and integrity of DNN accelerators
is paramount across various scenarios spanning autonomous driving,
healthcare, and finance. However, current security approaches typically
require extensive hardware resources, and incur significant off-chip
memory access overheads. This paper introduces SeDA, which utilizes 1)
a bandwidth-aware encryption mechanism to improve hardware resource
efficiency, 2) optimal block granularity through intra-layer and inter-layer
tiling patterns, and 3) a multi-level integrity verification mechanism that
minimizes, or even eliminates, memory access overheads. Experimental
results show that SeDA decreases performance overhead by over 12%
for both server and edge neural processing units (NPUs), while ensuring
robust scalability. 1

Index Terms—Memory protection, secure DNN accelerators, confiden-
tiality and integrity, deep neural networks

I. INTRODUCTION

Securing Deep Neural Networks (DNNs) on neural processing
units (NPUs) is increasingly vital for mission-critical applications in
areas such as autonomous driving [1], healthcare [2], and finance [3].
The Artificial Intelligence (AI) hardware market was valued at USD
54.10 billion in 2023 and is expected to surge to USD 474.10 billion
by 2030, reflecting a remarkable CAGR of 38.73% [4]. Protecting
DNN accelerators by ensuring confidentiality and integrity is crucial
for several reasons: Data Confidentiality: The sanctity of training
data is non-negotiable. Protecting training data is essential to prevent
unauthorized access and exploitation of private or sensitive information.
Resource Costliness: The substantial investment in training resources
necessitates stringent security protocols. Safeguarding these resources
not only ensures their optimal utilization but also protects against
financial losses and inefficiencies. Vulnerability to Malicious Attacks:
Malicious intent poses a significant threat to DNN models. Protecting
these models from potential tampering and attacks is critical to
maintaining their integrity and functionality, safeguarding against
adverse outcomes and ensuring the reliability of AI systems.

To protect traditional DNN accelerators from model theft and
malicious tampering, as illustrated in Fig. 1(a) and Fig. 1(b), broad
approaches [5]–[11] have been proposed to secure these accelerators,
with the primary aim of minimizing off-chip memory access overhead
for security metadata. They typically use the counter-mode encryption
of Advanced Encryption Standard (AES-CTR) for confidentiality and
the message authentication code (MAC) for integrity verification, as
shown in Fig. 1(c). The counter value in AES-CTR concatenates
the physical address (PA) and a a⃝ version number (VN) of a
data block, with the VN stored off-chip and incremented with each
write. To ensure the integrity of off-chip memory data, each data

1SeDA source code: https://github.com/wayne4s/seda.git

letale
x
mobres

t
go

o
dlr

m
alg

o
ds

2
fas

t
nc

f
se

nt trfyo
loav

g
20

25

30
M

em
. A

cc
es

s
O

ve
rh

ea
d

(%
)

Workloads

 Traffic Exec. Time

�Model
 theft

�Malicious
 tampering

(b) Attacks

(d) Memory access overhead (e) Hardware crypto overhead

(a) Conventional
DNN accelerators

PE array

SRAM
👿

Attacker

(c) Typical secure DNN accelerators

O
ff-chip M

em
ory

Ciphertext

Security
metadata

 Serial encryption Parallel encryption

ciphertext
(16B)

plaintext
(16B)

Crypto Engine

stolen

tamperd

Off-chip Memory

Plaintext

Security

SRAM
Protection Unit
Crypt Engine

Integ Engine

PE array

CE

OTP

CE

OTP

OTP

CE

OTP

CE

O
TP CE

Fig. 1. Insight of typical secure accelerators. (a) Traditional DNN accelerators
use untrusted off-chip memory and communication buses, risking model theft
and malicious tampering, as shown in (b). (c) Secure DNN accelerators typically
protect data confidentiality and integrity with memory protection schemes
using AES encryption and Hash function. (d) Accessing security metadata
in off-chip memory adds overhead. (e) Parallel hardware encryption incurs
overhead to meet bandwidth needs of accelerators.

block is accompanied by a b⃝ message authentication code (MAC).
Additionally, a c⃝ Merkle Tree (MT) [12] and its variants are often
utilized, with the root stored on-chip to prevent replay attacks.

Motivation 1 ▶ Costly Off-Chip Memory Access Overhead for
Integrity Verification. Accessing security metadata (e.g., a⃝ b⃝ c⃝) to
ensure the confidentiality and integrity of untrusted off-chip memory
significantly increases memory access overhead, as shown in Fig. 1(d).
Existing approaches propose several optimizations: using Bonsai
Merkle Tree (BMT) [13] instead of traditional MT for smaller version
numbers (VNs); employing coarser-grained protection units, such
as 512B data blocks instead of 64B cachelines; and dynamically
updating VNs based on DNN model state information to eliminate
off-chip memory access [8], [9]. Securator [11] uses a layer-level
MAC to reduce off-chip memory access for integrity checks. However,
it overlooks the overlap of intra-layer tiles and distinct tiling patterns
across layers, potentially leading to redundant encryption/decryption
and integrity verification overhead. Moreover, not considering inter-
layer tiling pattern differences may result in false negatives.

Motivation 2 ▶ High Hardware Overhead for Confidentiality
Protection. Due to the AES Engine’s limitation of en/decrypting

only a 128-bit data block at one time, typical solutions to meet the
high bandwidth demands of DNN accelerators involve increasing
the number of AES Engines. For example, Securator [11] uses four
AES engines to en/decrypt a 64B data block, as shown in Fig. 2(c).
However, this approach adds strain on resource-limited accelerators,
requiring a careful balance between hardware resource allocation
and security performance. As illustrated in Fig. 1(e), a single Crypto
Engine can only perform serial encryption, failing to meet the high
bandwidth demands of DNN accelerators, while multiple AES engines
can satisfy these demands but result in significant hardware encryption
overhead.

In this paper, we introduce SeDA, a novel secure and efficient DNN
accelerator architecture with reduced hardware resource consumption
and near-zero performance overhead for integrity verification, while
maintaining the same level of security and practical applicability. This
paper makes the following major contributions:

• Insight. Providing an in-depth insight of limitations of current
memory protection strategies for DNN accelerators highlights two
critical concerns: the substantial hardware overhead for encryption
and the expensive off-chip memory access for integrity verification.

• Solution. Through hardware/software synergy, we present SeDA,
a secure and efficient accelerator architecture. It incorporates a
bandwidth-aware encryption mechanism that utilizes a single AES
engine with adjustable encryption granularity, minimizing hardware
resource overhead. Furthermore, its multi-level integrity verification
mechanism significantly reduces or eliminates off-chip memory
access overhead.

• Evaluation. Conducting extensive experiments using cycle-accurate
simulators for DNN accelerators, memory protection schemes,
and off-chip memory accesses. Experimental results of SeDA
demonstrate a performance improvement, reducing overhead by
12.26% for server NPU and 12.29% for edge NPU, while also
providing robust scalability with minimal hardware overhead to
meet the bandwidth demands of accelerators.

This paper is structured as follows: Section II reviews related
work on memory protection and the threat model for our study. In
Section III, we provide a detailed introduction to the proposed SeDA
architecture. We then conduct extensive experiments on various DNN
models in Section IV. Finally, Section V concludes our work.

II. RELATED WORK AND THREAT MODEL

Based on the corresponding threat model, secure DNN accelerators
typically provides robust confidentiality and integrity guarantees in
untrusted environments.

A. Confidentiality Protection

Confidentiality protection typically uses AES-CTR mode due
to several advantages: 1) it utilizes the same AES engine for
en/decryption, reducing hardware overhead (see Fig. 2(a)); 2) One
time pad (OTP) generation can be parallelized with communication
and DNN computation, minimizing time overhead; and 3) its block-
based streaming mode does not require prior knowledge of data size
and scale. The AES-CTR encryption requires a non-repeating and
incrementing counter to produce a OTP for each encryption/decryption
under the same key. The counter concatenates the physical address
of a data block that will be encrypted and version number that is
incremented on each write memory operation. Here, let Ke,P, C
be the AES encryption key, plaintext, ciphertext, respectively. The
AES-CTR mode for encryption and decryption can be formulated as
following Eq. 1 and Eq. 2, where AES-CTRKe(PA||V N) produces

Off-chip
memory

Accelerator

plaintext ciphertext

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

ke
yE

xp
an

si
on

initial
round

(n-1)
round

final
round

one time pad

key counter

(a) AES-CTR mode

(b) Diagram of AES engine
(c) Parallel encryption with

multiple AES engines

k0

ki

kn

plaintext
block

ciphertext
block

n=10 if key=128bits
n=12 if key=192bits
n=14 if key=256bits

Encryption

Decryption

key, counter

one time pad

AES Engine

AES Engine

AES Engine

AES Engine

AES Engine

PB PB PB PB

CB CB CB CB

Fig. 2. Summary of AES-CTR mode. (a) Reusing AES engine for encryption
and decryption in AES-CTR mode. (b) Diagram of the AES engine, featuring
the AddRoundKey, SubBytes, ShiftRows, MixColumns, and keyExpansion
modules. (c) Utilization of multiple AES engines for parallel encryption to
boost high-bandwidth capabilities.

a OTP, || and ⊕ represents a bit-wise concatenation and XOR operator,
respectively.

C = P ⊕AES-CTRKe(PA || V N) (1)

P = C ⊕AES-CTRKe(PA || V N) (2)

When an accelerator reads a data block from off-chip memory,
the protection module uses the VN to generate an OTP and decrypts
the block by XORing it with the OTP (red path in Fig. 2(a), Eq. 2).
Similarly, when writing a data block to off-chip memory, the module
increments the VN to generate an OTP and encrypts the block by
XORing it with the OTP (blue path in Fig. 2(a), Eq. 1). Fig. 2(b)
illustrates the diagram of the AES engine along with its key functional
modules.

B. Integrity Verification

To ensure data integrity against off-chip memory tampering, an
integrity verification engine computes a message authentication code
(MAC) by concatenating a data block with its physical address and
version number. This MAC is generated during every write operation
and verified during reads to ensure data authenticity. Relying solely
on MAC for a data block fails to guarantee freshness and opens the
door to replay attacks. To counter this threat, prior works utilize an
Integrity Tree for hierarchical MAC verification, such as MT [12]
and Bonsai Merkle Tree (BMT) [13], with the root stored on-chip to
prevent malicious tampering. The overhead of integrity verification is
non-trivial since it requires traversing both MACs and the nodes of
the Integrity Tree stored in the off-chip memory to prevent the replay
attack.

C. Secure DNN Accelerators

Intel SGX [5] creates a secure enclave using CPU hardware
mechanisms, using AES-CTR mode and MT with its root in the
Trusted Computing Base (TCB). SEAL [6] introduces a criticality-
aware smart encryption scheme that selectively bypasses the encryption
engine for partial data and colocates data with corresponding counters.
GuardNN [7] proposes a secure accelerator architecture by using small
TCB and low overhead for privacy-preserving deep learning. MGX [8]
introduces a secure DNN accelerator with application-specific version
number management, utilizing on-chip status for version number

 Untrusted off-chfip memory

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

Protectfion Unfit

Compute Unfit

Crypt Engfine Integ Engfine

SRAM (fifmap, wgts, ofmap)

(a) Hardware optfimfizatfion: bandwfidth-aware encryptfion

Cfiphertext

(b) Software optfimfizatfion: cross-layer-aware fintegrfity verfifficatfion

Intra-layer-aware block
for overlap tfiles

 optBlk MAC

optBlk

layer MAC

model MAC

ofmap tfiles
of layer fi

fifmap tfiles
of layer fi+1

Inter-layer-aware block for
defferent tfilfing patterns

optBlk

layer 0 layer 1 layer 2 layer n-1

Plafintext

ke
ys fro

m
Ke
y
Expa
nsfion

AES Engfine

OTP

OTP1

OTP2

OTP3

OTPfi

Ffig.3. OvervfiewofSeDAarchfitecture.(a)TheCryptEngfineoptfimfizeshardwarebyXORfingkeysfromtheAESEngfine’sKeyExpansfionmodulewfithOPT,
creatfingbandwfidth-sensfitfiveencryptfiongranularfityandreducfinghardwareoverheadcomparedtousfingmultfipleAESEngfines.(b)TheIntegEngfineoptfimfizes
softwarebyanalyzfingoverlappfingtfileswfithfinalayerandpatternsacrosslayerstodetermfinetheoptfimalblocksfize,optBlk,forfintegrfityverfificatfion.Thfis
leadstoamultfi-levelfintegrfityverfificatfionmechanfismwfithoptBlkMAC,layerMAC,andmodelMAC.

generatfionandcoarse-grafinedfintegrfityverfificatfiontoreduceoff-chfip
memoryoverhead.Inasfimfilarvefin,TNPU[9]generatesallversfion
numberswfithfinanon-chfipcache.Securator[11]fintroducesalayer-
levelfintegrfitychecksbyXORfingallmessageauthentficatfioncodes
(MACs)wfithfinalayer.

D.ThreatModel

Sfimfilartothethreatmodelproposedfinlfiterature[8],[9],we
assumethattheacceleratorfitselffissecure,meanfingthatfitsfinternal
statecannotbedfirectlyobservedortamperedwfith.Anyexternal
devficeconnectedtotheacceleratorfisconsfidereduntrusted,suchas
off-chfipmemoryandcommunficatfionbuses,meanfingthatattackers
couldpotentfiallyaccessormanfipulateanyfinformatfionstoredfinthese
devficesthroughphysficalorsoftwareattacks.Notably,wedonot
consfiderotherphysficalsfide-channelattackstofinferDNNmodel
archfitectures[14],suchaspowerchannelattacksandelectromagnetfic
attacks.Addfitfionally,adversarfialattacks[15]agafinstmachfinelearnfing
algorfithmsarealsonotwfithfinscopetoensurethatdecryptfionfis
restrfictedtoauthorfizeduserspossessfingthekey.

III.SeDAARCHITECTURE

ThfissectfionfinfitfiallyprovfidesanovervfiewofSeDA. Wethen
subsequentlyexploresthescalabfilfitychallengesofcryptographfic
hardwareandtheexpensfiveoff-chfipmemoryaccessoverheadfin
fintegrfityverfificatfion,provfidfingcorrespondfingsolutfionsforeach.

A.Overvfiew

SeDAprovfidesasecureandefficfientenvfironmentforDNN
acceleratorsbyhardware/softwareco-optfimfizatfion.Theovervfiew
archfitectureoftheframeworkfispresentedfinFfig.3.TheAESEngfine’s
lfimfitatfiontoencryptfingonlya128-bfitdatablockatonetfimeposesa
challengefinmeetfingthehfighbandwfidthdemandsofDNNaccelerators.
SeDAaddressesthesefissuesbyutfilfizfingbandwfidth-awareencryptfion
mechanfismtooptfimfizehardwareresourcesfimpactedbysecurfity
concerns,asfillustratedfinFfig.3(a).Addfitfionally,thefinclusfionof
securfitymetadatabysecureDNNacceleratorsresultsfinstorageand
accessoverheadsfinoff-chfipmemory.Forexample,usfingan8B
MACtorepresenta64Bdatablockaloneleadstoa12.5%fincrease
finmemorytraffic.Tomfitfigatethfis,SeDAfintroducesamultfi-level
fintegrfityverfificatfionsoftwareoptfimfizatfionmechanfism,showcasedfin
Ffig.3(b).Furthermore,securelyhousfingtheselfimfitedMACsdfirectly

Algorfithm1:AttackanddefenseofSECA

AttackofSECA
Input:OTP:onetfimepadforadatablock(blk);

most_value_p:mostusedplafintextfinblk.
Output:value_p:allplafintextofblk

1most_value_c↢ CALCFREQVALUE(blk)
2OTP↢ most_value_p⊕most_value_c
3foreachencryptedelementvalue_cofblkdo
4 value_p↢ value_c⊕OTP

DefenseofSECA
Input:PA,VN:physficaladdressandversfionnumberofblk.
Output:OTPfi:generatemultfipleOTPsforblk

5OTP↢ AES-CTRKe(PA||VN)
6foreach128-bfitkeyfifinkeyExpansfionofAES-CTRdo
7 OTPfi↢ (OTP⊕keyfi)

finon-chfipSRAMcanelfimfinateoff-chfipmemoryaccessoverheads
entfirely.

B.Bandwfidth-awareencryptfionmechanfism

Tomeetthehfighbandwfidthdemandsofaccelerators,fincreasfing
thenumberofAESengfinesfincurssfignfificantoverhead,whfileusfing
thesameOTPforalldatafinablockfintroducessecurfityrfisks.Thfis
dfilemmaoftenleadstoasuboptfimaltrade-offbetweensecurfityand
computatfionalefficfiency.

Challenge1:HfighHardwareResourcesforConfidentfialfity
Protectfion.Whfilemafintafinfinganequfivalentlevelofsecurfity,nu-
merousapproacheshavebolsteredencryptfionparallelfismbystackfing
multfipleAESengfines.Forexample,Securator[11]usesfourAES-
128engfinestoconcurrentlyencrypta64Bdatablock,asshownfin
Ffig.2(c).Nevertheless,thedrawbackofsacrfificfinghardwareresources
toachfieveperformancefimprovementsfinencryptfionanddecryptfion
fisapparent,partficularlyforedgeDNNacceleratorsconstrafinedby
lfimfitedhardwarecapabfilfitfies.Thfissfituatfionemphasfizesthecrucfial
equfilfibrfiumneededtooptfimfizesecurfityandoperatfionalefficfiencyfin
thesesystems.

Challenge2:SecurfityThreatforSharedOTP.Astrafightforward
approachfistouseeachengfineonceperdatablock,wfitheach128-bfit

segment within this data block sharing the same OTP. Nevertheless,
assigning a OTP to a individual data block poses security risks and
could be vulnerable to a Single-Element Collision Attack (SECA).
The principle of a SECA attack when a data block shares the same
OTP is outlined in lines 1-4 of Algorithm 1. By employing the
CALCFREQVALUE function, we can identify the most frequently
encrypted data within the block, denoted as most_value_c. Through
comprehensive data analysis, we can infer the most common plaintext
data within the block, denoted as most_value_p (e.g., 0). Referring
to the AES-CTR encryption formula Eq. 1, we can calculate the OTP
for that block as most_value_c⊕most_value_p, as shown in line 2
of Algorithm 1. Since the block shares this OTP, once obtained, we
can derive all plaintext values within the encrypted block, as shown
in lines 3-4 of Algorithm 1. Extending this principle further, we can
extract the data values from every DNN layer and even the entire
model.

Solution. We introduce a novel bandwidth-aware encryption mecha-
nism to meet the high bandwidth requirements of accelerators without
compromising the security of encryption. This method leverages the
inherent features of AES-CTR encryption mode, using just a single
AES engine and a minimal number of XOR logic gates, as illustrated
in Fig. 3(a). To defend against SECA attacks, we first employ a
standard AES-CTR encryption engine to create a shared OTP for a
data block, as shown in line 5 of Algorithm 1. Subsequently, utilizing
the keys array produced by the keyExpansion module within the
AES-CTR encryption engine, we can generate multiple distinct OTPs
by XORing the OTP with keys, as shown in lines 6-7 of Algorithm 1.
This ensures that each 128-bit data segment within the data block
corresponds to a unique OTP, thereby thwarting SECA attacks to
safeguard security. Moreover, this mechanism significantly conserves
hardware resources by utilizing a small number of XOR logic gates
instead of an equivalent number of AES engines, commonly used by
traditional methods.

When it comes to securing the entire DNN model, using a single
key in the AES-CTR keyExpansion process is typically sufficient to
ensure security. We proceed with the assumption that multiple keys
are generated through the keyExpansion module using just one key.
The keys produced by key expansion are inherently secure. These
keys can be stored on-chip or generated in real-time. By XORing the
shared OTP from a data block with these different keys, new secure
OTPs can be generated. When generating OTPs from multiple keys
derived from a single key input for keyExpansion doesn’t meet the
accelerator’s bandwidth requirements, expanding the key expansion
input to key ⊕ (PA || VN) can solve the issue. This approach produces
enough OTPs for a data block, meeting both security and bandwidth
needs simultaneously.

C. Multi-level integrity verification mechanism

The granularity of integrity verification, whether too large or
too small, can be problematic. Small granularity increases security
metadata and off-chip memory overhead, affecting performance.
Larger granularity reduces metadata overhead but can lead to redundant
processing due to tiling overlaps. SeDA addresses this with a multi-
level integrity verification mechanism that combines the flexibility of
fine granularity, which avoids redundant security computations, with
near-zero overhead of coarse granularity, significantly reducing or
eliminating off-chip memory access overhead.

Challenge 1: Expensive Off-Chip Memory Access for Integrity
Checks. While recent research efforts [8], [9] have successfully
eliminated the off-chip memory access overhead of VNs and Merkle
Trees, the overhead introduced by MACs still remains to be adequately

Algorithm 2: Attack and defense of RePA
Attack of RePA
Input : MACi: the MAC of a data block in one layer.
Output : plaintext_e: error plaintext.

1 SUM_MAC ↢
∑n

i=1 ⊕ MACi

2 SHUFFLEORDER(MACs)
3 SUM_MAC_shuffle ↢

∑n
i=1 ⊕ MAC

′
i

4 if True = VERIFYINTEG(SUM_MAC, SUM_MAC_suffle) then
5 for each encrypted data block blk of one layer do
6 plaintext_e ↢ DECRYPT(blk)

Defense of RePA
Input : layerid, fmapidx, blkidx: layer number, feature

map index and block index of layerid.
Output : Secure layer MAC.

7 for each encrypted data block blk of layerid do
8 MACi ↢ HASHKh(blk || PA || VN || layerid || fmapidx

|| blkidx)

TABLE I
COMPARISON OF MULTI-LEVEL INTEGRITY VERIFICATION GRANULARITY.

Granularity Flexibility Off-chip Access Overhead Storage

optBlk Off-chip
layer Off/On-chip
model On-chip

*Note: Color depth shows intensity, while coverage area indicates ratio.

addressed. Securator [11] proposed a layer-level freshness and integrity
check method to reduce the MACs overhead by XORing MACs of
all blocks within a layer, with a block size granularity of 32 bytes.
The approach didn’t consider tile overlaps within a layer, causing
redundant computations like repeated integrity checks, which adds
costs. Securator also ignored different tiling patterns between layers.
Fig. 3(b) shows that ofmap in layer i and ifmap in layer i+1
use different strategies, which can vary in size and direction. Not
addressing inter-layer tiling properly can lead to extra costs or disrupt
the model due to inaccurate integrity checks.

Challenge 2: Security Threat for XOR-MAC Scheme. The XOR-
MAC scheme offers parallelizability, incrementality, and provable
security, with its security being on par with that of chaining MAC [16].
However, XORing all MACs generated by directly hashing the
ciphertext within a layer to produce a unique layer MAC could
lead to a Re-Permutation Attack (RePA), as illustrated in lines 1-6
of Algorithm 2. SHUFFLEORDER rearranges the order of data blocks
in the current layer and computes SUM_MAC_shuffle for that layer
using XOR operations. Because XOR is commutative, meaning the
order of operands doesn’t affect the result, an attacker can successfully
pass the VERIFYINTEG(SUM_MAC, SUM_MAC_shuffle) verifica-
tion. This rearrangement of data blocks within a layer can hinder
correct decryption of ciphertext, posing a security risk due to RePA
vulnerability.

Solution. To reduce off-chip memory access overhead from integrity
verification, we propose a secure multi-level mechanism. It combines
block-level and layer-level checks to minimize memory access by
leveraging deterministic memory access patterns of DNNs, while
ensuring security. We use the scheduling search strategy proposed
in the SecureLoop [10] to obtain the optimal authentication block

TABLE II
DNN SIMULATION CONFIGURATIONS [20], [21].

Metrics Server (Google TPU v1) Edge (Samsung Exynos 990)
PE 256 x 256 in systolic array 32 x 32 in systolic array

Bandwidth 20 GB/s with 4 channels 10 GB/s with 4 channels
Frequency 1 GHz 2.75 GHz

SRAM 24 MB 480 KB
Presision 1-B for per element 1-B for per element

(optBlk), which synergizes with our work orthogonally. We propose
a novel multi-level integrity verification mechanism involving three
granularities of MAC types: optBlk MAC, layer MAC, and model
MAC, as shown in Fig. 3(b). Table I compares their features in detail.
The optBlk MAC offers flexibility by accounting for intra-layer tiling
overlap and diverse inter-layer tiling patterns, avoiding redundant
computations from repeated integrity checks. By XORing all optBlk
MACs within a layer to create the layer MAC, we achieve a significant
reduction in the number of MACs needed for DNN model integrity
verification, despite a slight delay due to layer-specific checks. This
allows layer MACs to be stored in on-chip SRAM, eliminating off-
chip memory access costs. The Model MAC uses a single MAC
to represent the entire model weights on-chip, further reducing off-
chip memory costs and conserving on-chip SRAM, with verification
results available only at the end of model inference. To prevent RePA
attacks, we associate each encrypted optBlk data block with specific
location details like PA, VN, layerid, fmapidx, and blkidx. We then
compute the corresponding MAC using hashing, as detailed in lines 7-
8 of Algorithm 2. In summary, our multi-level integrity verification
mechanism can remove off-chip memory overhead from security
metadata, ensuring security while maintaining integrity guarantee.

IV. EVALUATION

A. Experimental Setup

Accelerators. In order evaluate DNN inference behaviours, we use
an open-source cycle-level DNN simulator SCALE-Sim2 [17], [18]
developed by ARM Research to 1) study the inference execution for
various DNN models; 2) analyse the performance overhead of different
memory protection schemes. The DNN accelerator can generate
detailed computation information of systolic array, and DRAM access
traces. After obtaining the DRAM traces, we use various memory
protection mechanisms to calculate execution time and bandwidth
usage, producing the total DRAM traces after running the security
simulator. Finally, we use the DRAM simulator Ramulator2 [19] to
simulate the total DRAM access traces.
Configurations. Table II presents the DNN simulation configurations,
featuring a server NPU (Google TPU v1) and an edge NPU (Samsung
Exynos 990). To balance DNN computation and memory bandwidth,
we simulate four 64-bit DDR channels for both the server and edge
NPUs.
Benchmarks. For DNN accelerators, we evaluate SeDA across various
DNN models, including Lenet (let), Alexnet (alex), Mobilenet (mob),
ResNet18 (rest), GoogleNet (goo), DLRM (dlrm), AlphaGoZero
(algo), DeepSpeech2 (ds2), FasterRCNN (fast), NCF_recommendation
(ncf), Sentimental_seqCNN (sent), Transformer_fwd (trf), Yolo_tiny
(yolo). These models are selected from diverse machine learning
domains, such as computer vision, speech recognition, natural language
processing, gaming, and personalized recommendation.
Memory Protection Simulation. We implemented accelerators based
on Intel SGX, MGX, and SeDA security mechanisms, using an
unprotected accelerator as a benchmark, and set the size of protected

0 2 4 6 8

8k

16k

24k

Po
w

er
 (μ

W
)

0 2 4 6 8

15k

30k

45k

Ar
ea

 (μ
m

²)

AES engine bandwidth requirements (16B)

0 2 4 6 8
8k16k24k

T-AES B-AES

Fig. 4. The area and power with increasing AES engine bandwidth
requirements.

let alexmobrestgoodlrmalgods2fast ncfsent trf yoloavg
0.8

1.0

1.2

 SGX-64B MGX-64B SGX-512B MGX-512B SeDA Baseline

let alex mob rest goo dlrm algo ds2 fast ncf sent trf yolo avg
0.8

1.0

1.2

Workloads

N
or

m
. M

em
. t

ra
ffi

c

(a) Server NPU

let alex mob rest goo dlrm algo ds2 fast ncf sent trf yolo avg
0.8

1.0

1.2
N

or
m

. M
em

. T
ra

ffi
c

Workloads
(b) Edge NPU

Fig. 5. The normalized memory traffic of memory protection schemes for
various workloads

memory to 16GB. SGX uses a multi-level Integrity Tree with 56-bit
VNs and 64-bit MACs, along with a 16KB VN cache and 8KB MAC
cache, both using an LRU replacement policy for write-back and
write-allocate strategies. We use two different protection granularities:
64B and 512B. To ensure fairness, SeDA stores layer MACs off-chip.

B. Experimental Results

We compare the memory traffic, which refers to the data exchanged
between off-chip memory and accelerators, and performance across a
unprotected baseline and five protection schemes: SGX-64B, SGX-
512B, MGX-64B, MGX-512B, and our proposed SeDA, as shown in
Table III. All results are normalized to the baseline without protection.

Area and Power. We developed a simulator based on 28nm
technology to evaluate area and power, utilizing the AES engine
implementations detailed in [22]. We refer to the bandwidth-aware
encryption mechanism as B-AES, and other traditional methods
using multiple AES engines as T-AES. Through simulation, we
assessed the changes in area and power. The x-axis represents the
bandwidth required by the encryption engine to match the accelerator’s
bandwidth needs, expressed as multiples of the bandwidth provided
by a single AES engine. As shown in Fig. 4, our proposed B-AES
demonstrates strong scalability, with minimal increases in area and
power consumption as the accelerator bandwidth increases.

Memory traffic. Fig. 5 compares the memory traffic overhead using
the DNN simulation configurations listed in Table II. On average,

TABLE III
COMPARISON OF MEMORY PROTECTION SCHEMES.

Protection Scheme Encryption Granularity Integrity Granularity Off-chip Memory Access DNN Tiling Pattern Encryption Scalability

SGX-64B 16B 64B MAC,VN,IT ✗ ✗
SGX-512B 16B 512B MAC,VN,IT ✗ ✗
MGX-64B 16B 64B MAC ✗ ✗

MGX-512B 16B 512B MAC ✗ ✗
SeDA bandwidth-aware multi-level minimal to no cost ✓ ✓

*Note: "IT" signifies integrity tree.

let alexmobrestgoodlrmalgods2fast ncfsent trf yoloavg
0.8

1.0

1.2

 SGX-64B MGX-64B SGX-512B MGX-512B SeDA Baseline

let alex mob rest goo dlrm algo ds2 fast ncf sent trf yolo avg
0.6

0.8

1.0

N
or

m
. P

er
fo

rm
an

ce

Workloads
(a) Server NPU

let alex mob rest goo dlrm algo ds2 fast ncf sent trf yolo avg
0.6

0.8

1.0

N
or

m
. P

er
fo

rm
an

ce

Workloads
(b) Edge NPU

Fig. 6. The normalized performance of memory protection schemes for
various workloads

SGX-64B increases memory traffic by 30% for Server NPU and
28.29% for Edge NPU. In contrast, MGX-64B, without the overhead
from additional VNs and MT, increases traffic by only 12.51% and
12.63%, respectively. Increasing the protection granularity from 64B
to 512B significantly reduces memory traffic. SGX-512B cuts traffic
by 7.83% on Server NPU and 5.13% on Edge NPU. MGX-512B
achieves reductions of 3.59% and 2.39% on these devices, respectively.
Expanding the protection granularity to 512 bytes reduces memory
traffic by minimizing security metadata. However, using larger data
blocks can lead to inefficiencies due to misalignment with intra-layer
tiling overlaps and varying inter-layer tiling patterns. This mismatch
can hinder memory access and resource utilization, emphasizing the
need for a balanced approach in selecting granularity to improve
system performance and efficiency. Our proposed SeDA uses a multi-
level integrity verification mechanism by XORing all optBlk MACs
into a layer MAC. Fig. 5 shows that SeDA introduces near-zero
memory traffic, with an overhead of only 0.12% for Server NPU and
0.03% for Edge NPU, highlighting the superiority of our proposed
protection mechanism.

Performance. Fig. 6(a) presents a performance comparison analysis
among the baseline and five memory protection mechanisms on Server
NPU. SGX-64B is 22.04% slower, MGX-64B is 10.93% slower,
SGX-512B is 8.49% slower, and MGX-512B is 4.28% slower than
the unprotected baseline. In contrast, our proposed SeDA impacts
performance by less than 1%, making it nearly negligible. This
is primarily attributed to proposed multi-level integrity verification

mechanism, which can reduce or even completely eliminate the
performance overhead of off-chip memory accesses caused by integrity
verification. By minimizing the storage and retrieval of MACs in
off-chip memory, SeDA effectively manages the security metadata
overhead from integrity verification. Additionally, by storing these
small layer or model MACs directly in on-chip SRAM, we can
remove the performance overhead associated with off-chip access
for integrity verification. For Edge NPU, Fig. 6(b) presents similar
findings. Compared to the baseline, SGX-64B, MGX-64B, SGX-512B,
and MGX-512B slow down by 21.10%, 10.95%, 5.84%, and 2.90%,
respectively. Remarkably, our proposed SeDA results in an almost
imperceptible performance drop.

V. CONCLUSION

In this work, we introduce SeDA, a secure and efficient DNN
accelerator architecture designed to ensure confidentiality and integrity
in untrusted environments. Using bandwidth-aware encryption and
multi-level integrity verification mechanisms, SeDA provides excellent
scalability with minimal overhead to match computational bandwidth
of accelerators, and significantly reduces or even eliminates off-chip
memory access overhead. Experimental results show that proposed
SeDA meets bandwidth requirements with near-zero hardware over-
head, and significantly reduces the performance overhead compared
to the state-of-the-art approaches.

ACKNOWLEDGMENT

This research was partially supported by the National Key R&D
Program of China (Grant No. 2022YFB3608300). It was supported
in part by ACCESS – AI Chip Center for Emerging Smart Systems,
sponsored by the InnoHK initiative of the Innovation and Technology
Commission of the Hong Kong Special Administrative Region Govern-
ment. It was also supported in part by Shenzhen Science and Technol-
ogy Innovation Commission (Grant No. SGDX20220530111405040),
Beijing Natural Science Foundation (Grant No. Z210006), Hong
Kong Research Grant Council (Grant Nos. 27209621, 17205922,
17212923), the National Natural Science Foundation of China under
Grant 62204111.

REFERENCES

[1] D. Parekh, N. Poddar, A. Rajpurkar, M. Chahal, N. Kumar, G. P. Joshi,
and W. Cho, “A review on autonomous vehicles: Progress, methods and
challenges,” Electronics, vol. 11, no. 14, p. 2162, 2022.

[2] G. Rong, A. Mendez, E. B. Assi, B. Zhao, and M. Sawan, “Artificial
intelligence in healthcare: review and prediction case studies,” Engineering,
vol. 6, no. 3, pp. 291–301, 2020.

[3] F. Rundo, F. Trenta, A. L. Di Stallo, and S. Battiato, “Machine learning for
quantitative finance applications: A survey,” Applied Sciences, vol. 9, no. 24,
p. 5574, 2019.

[4] “Artificial intelligence AI hardware market size and forecast,”
https://www.verifiedmarketresearch.com/product/global-artificial-
intelligence-ai-hardware-market/, 2024.

[5] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint Archive,
2016.

[6] P. Zuo, Y. Hua, L. Liang, X. Xie, X. Hu, and Y. Xie, “Sealing neural network
models in encrypted deep learning accelerators,” in ACM/IEEE Design
Automation Conference, 2021, pp. 1255–1260.

[7] W. Hua, M. Umar, Z. Zhang, and G. E. Suh, “Guardnn: secure accelerator
architecture for privacy-preserving deep learning,” in ACM/IEEE Design
Automation Conference, 2022, pp. 349–354.

[8] W. Hua, M. Umar, Z. Zhang, and G. E. Suh, “MGX: Near-zero overhead
memory protection for data-intensive accelerators,” in International Sympo-
sium on Computer Architecture, 2022, pp. 726–741.

[9] S. Lee, J. Kim, S. Na, J. Park, and J. Huh, “TNPU: Supporting trusted
execution with tree-less integrity protection for neural processing unit,”
in International Symposium on High-Performance Computer Architecture,
2022, pp. 229–243.

[10] K. Lee, M. Yan, J. Emer, and A. Chandrakasan, “SecureLoop: Design
space exploration of secure DNN accelerators,” in IEEE/ACM International
Symposium on Microarchitecture, 2023, pp. 194–208.

[11] N. Shrivastava and S. R. Sarangi, “Securator: A fast and secure neural pro-
cessing unit,” in International Symposium on High-Performance Computer
Architecture, 2023, pp. 1127–1139.

[12] B. Gassend, G. E. Suh, D. Clarke, M. Van Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in International
Symposium on High-Performance Computer Architecture, 2003, pp. 295–
306.

[13] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address inde-
pendent seed encryption and bonsai merkle trees to make secure processors
os-and performance-friendly,” in IEEE/ACM International Symposium on
Microarchitecture, 2007, pp. 183–196.

[14] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging
shared resource attacks to learn DNN architectures,” in USENIX Security
Symposium, 2020, pp. 2003–2020.

[15] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning in
computer vision: A survey,” Ieee Access, vol. 6, pp. 14 410–14 430, 2018.

[16] M. Bellare, R. Guérin, and P. Rogaway, “XOR MACs: New methods for
message authentication using finite pseudorandom functions,” in Annual
International Cryptology Conference, 1995, pp. 15–28.

[17] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna, “SCALE-
Sim: Systolic CNN accelerator simulator,” arXiv preprint arXiv:1811.02883,
2018.

[18] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “A systematic methodology for characterizing scalability of DNN
accelerators using scale-sim,” in International Symposium on Performance
Analysis of Systems and Software, 2020, pp. 58–68.

[19] H. Luo, Y. C. Tuğrul, F. N. Bostancı, A. Olgun, A. G. Yağlıkçı, and O. Mutlu,
“Ramulator 2.0: A modern, modular, and extensible DRAM simulator,”
Computer Architecture Letters, 2023.

[20] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami,
R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu,
R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,
D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,
Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony,
K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,
E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance
analysis of a tensor processing unit,” in International Symposium on
Computer Architecture, 2017, p. 1–12.

[21] J. Song, Y. Cho, J.-S. Park, J.-W. Jang, S. Lee, J.-H. Song, J.-G. Lee, and
I. Kang, “7.1 An 11.5TOPS/W 1024-MAC butterfly structure dual-core
sparsity-aware neural processing unit in 8nm flagship mobile SoC,” in IEEE
International Solid-State Circuits Conference, 2019, pp. 130–132.

[22] U. Banerjee, “Energy-efficient protocols and hardware architectures for
transport layer security,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2017.

