
Late Breaking Results: Hybrid Logic Optimization
with Predictive Self-Supervision

Rongliang Fu1, Ran Zhang2, Ziyang Zheng1, Zhengyuan Shi1, Yuan Pu1, Junying Huang2∗, Qiang Xu1 and Tsung-Yi Ho1

1Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
2State Key Lab of Processors, Institute of Computing Technology, CAS, Beijing, China

Abstract—Hybrid optimization is an emerging approach in
logic synthesis, focusing on applying diverse optimization meth-
ods to different parts of a logic circuit. This paper analyzes the
relationship between each vertex and its corresponding optimiza-
tion method. We extract a subgraph centered on each vertex
and quantify the logic optimization results of these subgraphs
as vertex features. Based on these features, we propose a circuit
partitioning method to cluster the logic circuit, enabling the final
optimized circuit to be constructed by merging clusters optimized
with their respective methods. Additionally, we introduce a self-
supervised prediction model to efficiently obtain vertex features.
The experimental results targeting LUT mapping demonstrate
that our method achieves improvements of 8.48% in area and
9.81% in delay compared to the state-of-the-art.

I. INTRODUCTION
Logic synthesis plays a crucial role in contemporary elec-

tronic design automation (EDA) [1], involving logic opti-
mization and technology mapping. Early efforts focused on
simplifying Boolean expressions using algebraic techniques.
As the complexity of digital circuits increased, the need for
more advanced optimization techniques led to the development
of multi-level logic optimization [2], which considers entire
networks of logic gates rather than isolated expressions. The
introduction of directed acyclic graphs (DAGs) for repre-
senting Boolean networks enabled more effective logic op-
timization by facilitating the exploration of different structural
configurations. Various types of graphs, such as And-Inverter
graphs (AIGs) [3], Majority-Inverter graphs (MIGs) [4], Xor-
And-Inverter graphs (XAGs) [5], and Xor-Majority-Inverter
graphs (XMGs) [6], were developed to capture different logic
functions and enable algebraic manipulation.

The introduction of these graphs has facilitated the de-
velopment of numerous logic optimization techniques, such
as rewriting, resynthesis, and resubstitution. However, these
methods mainly focus on a single type of graph representation.
Due to the complexity of graph structures, hybrid optimiza-
tion, a combination of these optimization techniques, has the
potential to significantly enhance circuit performance. Neto et
al. proposed LSOracle [7], which seeks to identify different
clusters within a given circuit and assigns a circuit graph
optimization technique to each cluster to explore a better
circuit design. Although LSOracle has demonstrated promising
results in reducing the area-delay product (ADP), it has notable
limitations: (i) it directly uses a general graph partition tool,
KaHyPar [8], to partition the circuit, without accounting for
unique characteristics of circuit design, and (ii) it employs a
neural network model to predict the optimization method of
each cluster, which may underperform on complex circuits.

∗ Corresponding author: huangjunying@ict.ac.cn.

Algorithm 1: Circuit partition
Input: Boolean network G(V,E) and param.: α, β, λ.
Output: Partition results cs.

1 depth, size← Get the depth and size of G

2 φ = 10
10×depth

size

3 while size > λ do
4 ζ ← Determine the block depth
5 Γ← Partition graph G into blocks of depth ζ
6 cs← {}
7 #block − based parallel running
8 for γ ∈ Γ do
9 g ← Leiden{γ}, and then remove cycles in g

10 cs← cs ∪ {g}
11 #end parallel running
12 G← Re-construct a graph based on clusters cs
13 depth, size← Get the depth and size of G
14 if φ ∈ (α, β) then
15 Merge vertices connected with large closeness in G
16 cs← Obtain the clusters from vertices within G
17 else
18 cs← Girvan-Newman{G}
19 return cs

To address these limitations and incorporate circuit-specific
characteristics in hybrid optimization, this paper proposes a
novel hybrid optimization framework using a self-supervised
prediction model. The framework extracts physical-aware fea-
tures of each vertex in a given Boolean network and then
uses these features to partition the network and identify
the most suitable optimization strategy for each cluster. The
experimental results on the EPFL benchmark [9] show the
effectiveness of our framework.

II. PROBLEM FORMULATION

Hybrid logic optimization involves the application of vari-
ous circuit graphs and corresponding logic optimization meth-
ods to a Boolean network. This approach aims to minimize
both delay and area. The problem can be formally defined as:

• Input: A Boolean network G(V,E).
• Output: An optimized logic circuit G′(V ′, E′).
• Goal: min {ADP = delay × area}, which can facilitate a

more effective balance between delay and area.

III. HYBRID OPTIMIZATION FRAMEWORK

A. Labeling Vertices
To label vertices in a Boolean network, we extract features

from an expanded subgraph gk(v) around each vertex v,
defined by a partial order ≼k. The costs of n optimiza-
tion methods applied to gk(v) are represented as a vector
Cost(v) = [ADP1,ADP2, · · · ,ADPn], which is softmax-
normalized to produce the label vector L(v), guiding parti-
tion and optimization tasks. For efficient prediction of L(v),
we use DeepGate3 [11] to generate functional (HF) and



TABLE I: Experimental results on the EPFL benchmark [9] after 6-LUT mapping, where {α, β, λ} = {7, 9, 15}.

Circuit AIG [10] MIG [10] XMG [10] XAG [10] LSOracle [7] Ours
delay area ADP delay area ADP delay area ADP delay area ADP delay area ADP delay area ADP

Voter 29 2013 1.27 27 2372 1.39 32 2213 1.54 34 3328 2.46 28 2001 1.22 25 1841 1
Adder 64 192 2.81 11 397 1.00 14 409 1.31 64 192 2.81 11 397 1.00 11 397 1

Bar 4 512 1.00 4 512 1.00 4 512 1.00 4 512 1.00 4 512 1.00 4 512 1
Log2 182 7889 1.21 135 9002 1.02 192 7796 1.26 185 8125 1.26 152 8366 1.07 131 9093 1

Arbiter 9 1876 1.92 9 2458 2.51 9 2726 2.78 11 1921 2.40 11 1912 2.39 5 1763 1
Priority 35 225 1.00 33 264 1.11 33 265 1.11 33 265 1.11 35 225 1.00 35 225 1

Multiplier 127 6356 1.78 68 7453 1.12 75 7504 1.24 119 6907 1.82 92 6800 1.38 75 6034 1
Cavlc 8 114 1.28 6 119 1.00 6 119 1.00 6 119 1.00 8 114 1.28 6 119 1

I2c 5 342 1.15 5 342 1.15 5 342 1.15 5 342 1.15 5 362 1.22 5 297 1
Sin 91 1587 1.16 64 1929 0.99 83 1583 1.05 83 1583 1.05 77 1741 1.07 71 1759 1
Div 1996 4231 1.00 732 28889 2.50 762 26647 2.40 1606 25529 4.85 2006 9491 2.25 1996 4231 1
Ctrl 2 28 1.00 2 28 1.00 2 28 1.00 2 28 1.00 2 28 1.00 2 28 1

Square 48 4992 1.64 30 4822 0.99 122 4043 3.38 122 4130 3.45 55 4454 1.68 32 4559 1
Dec 2 273 1.00 2 273 1.00 2 273 1.00 2 273 1.00 2 273 1.00 2 273 1

Router 13 53 1.00 13 53 1.00 13 53 1.00 13 53 1.00 10 68 0.99 13 53 1
Max 45 1689 3.15 22 1529 1.39 22 2288 2.09 89 787 2.90 45 1689 3.15 24 1005 1

Memctrl 56 12326 1.35 41 13309 1.07 45 11969 1.05 49 11709 1.12 46 12164 1.09 43 11913 1
Int2float 4 47 1.00 4 47 1.00 4 47 1.00 4 47 1.00 4 56 1.19 4 47 1

Sqrt 2004 4045 1.06 3386 8044 3.55 3386 8044 3.55 3689 7839 3.77 1965 3924 1.01 1960 3912 1
Hyp 8520 49736 1.00 8520 49736 1.00 8520 49736 1.00 8520 49736 1.00 8525 51943 1.05 8521 49530 1

Ave. ratio 1.46 1.02 1.39 1.03 1.45 1.34 1.24 1.43 1.55 1.69 1.32 1.86 1.18 1.14 1.35 1 1 1

structural (HS) embeddings for gk(v). These embeddings are
concatenated and processed by a Multi-Layer Perceptron to
predict L̂(v). The loss is computed by comparing the softmax-
normalized ground truth L(v) and predicted L̂(v).

B. Circuit Partition
We propose a Boolean network partition method combin-

ing hierarchical partitioning and re-clustering to address the
challenges in Section II, as detailed in Algorithm 1. The hi-
erarchical partition iteratively divides the network into blocks
based on logic depth ζ (lines 4-5), guided by a measure φ that
balances depth and size (line 2). Blocks are further partitioned
into clusters using the Leiden method [12], with edge weights
redefined to emphasize vertex optimization similarity (lines 7-
11). Cycles between clusters are resolved through merging
(line 9), and a new graph is constructed with clusters as
vertices (line 12), repeating the process until the graph size
meets a threshold λ (lines 3-13). To enhance global partition
quality, re-clustering is applied based on φ: for balanced
networks (φ ∈ (α, β)), vertices with high closeness are merged
(lines 14-16), while for imbalanced networks, the Girvan-
Newman algorithm [13] is used to refine clusters (line 18).

C. Sub-circuit Optimization
After partitioning the Boolean network into clusters, the

optimization method for each cluster c ∈ cs is determined
based on the tendency T (c), calculated by summing the one-
hot encoded labels Φ(L(v)) of its vertices, where Φ(L(v))
highlights the preferred optimization method for vertex v.
The final optimization method for each cluster is selected via
argmax(T (c)), favoring the method preferred by the majority
of vertices. After optimizing all clusters, the optimized clusters
are merged to form the final circuit G′.

IV. EXPERIMENTAL RESULTS

All experiments were conducted on a machine with In-
tel(R) Xeon(R) Platinum 8350C processor, NVIDIA A100
GPU, and 1.5 TB memory. To assess the effectiveness of
our framework, we targeted 6-LUT mapping and used the

optimization methods corresponding to the four circuit graphs
provided by [10], as well as LSOracle [7] as baselines.
Training datasets included all aiger files from ISCAS’89 [14]
and 5,000 subgraphs from Square [9]. After 400 epochs, the
loss converged to 0.0192, with a 96.83% success rate in
predicting the minimum value of L. Table I shows that our
method outperforms the baselines in terms of area, delay,
and ADP, and reduces them by 8.48%, 9.81%, and 17.46%
respectively compared to LSOracle.

ACKNOWLEDGMENT
The work was conducted in the JC STEM Lab of Intelligent

Design Automation funded by The Hong Kong Jockey Club
Charities Trust. It was jointly funded by the Research Grants
Council of Hong Kong SAR (No. CUHK14207523) and the
National Natural Science Foundation of China (No. 62302477).

REFERENCES
[1] Testa et al., “Logic synthesis for established and emerging computing,”

Proceedings of the IEEE, vol. 107, no. 1, pp. 165–184, 2019.
[2] Brayton et al., “MIS: A multiple-level logic optimization system,” IEEE

TCAD, vol. 6, no. 6, pp. 1062–1081, 1987.
[3] L. Hellerman, “A catalog of three-variable or-invert and and-invert

logical circuits,” IEEE Transactions on Electronic Computers, vol. EC-
12, no. 3, pp. 198–223, 1963.

[4] Amarú et al., “Majority-inverter graph: A novel data-structure and
algorithms for efficient logic optimization,” in Proc. DAC, 2014.

[5] Meuli et al., “Xor-And-Inverter graphs for quantum compilation,” npj
Quantum Information, vol. 8, 12 2022.

[6] Haaswijk et al., “A novel basis for logic rewriting,” in Proc. ASPDAC,
2017, pp. 151–156.

[7] Neto et al., “LSOracle: a logic synthesis framework driven by artificial
intelligence: Invited paper,” in Proc. ICCAD, 2019.

[8] Schlag et al., “High-quality hypergraph partitioning,” ACM Journal of
Experimental Algorithmics, vol. 27, 2023.

[9] L. Amarù, P.-E. Gaillardon, and G. De Micheli, “The EPFL combina-
tional benchmark suite,” in Proc. IWLS, 2015.

[10] Soeken et al., “The EPFL logic synthesis libraries,” 2022.
[11] Shi et al., “DeepGate3: Towards scalable circuit representation learning,”

arXiv preprint arXiv:2407.11095, 2024.
[12] Traag et al., “From Louvain to Leiden: guaranteeing well-connected

communities,” Scientific Reports, vol. 9, no. 5233, pp. 2045–2322, 2019.
[13] Despalatović et al., “Community structure in networks: Girvan-Newman

algorithm improvement,” in Proc. MIPRO, 2014, pp. 997–1002.
[14] Hansen et al., “Unveiling the ISCAS-85 benchmarks: A case study in

reverse engineering,” IEEE Des. Test, vol. 16, no. 3, pp. 72–80, 1999.


