eLogic: An E-Graph-based Logic Rewriting
Framework for Majority-Inverter Graphs

Rongliang Fu', Wei Xuan?, Shuo Yin!, Guangyu Hu?, Chen Chen?, Hongce Zhang3, Bei Yu', Tsung-Yi Ho!

ICUHK 2HKUST S3HKUST-GZ
rlfu@cse.cuhk.edu.hk
Abstract—Majority-Inverter Graph (MIG) emerges as a promis- f .
ing data structure for logic optimization and synthesis, offering depth .s1'ze .
a more compact representation for logic functions compared optimization optlmlzatlon
to traditional AND/OR-Inverter graphs. Consequently, the MIG
finds widespread application in digital circuit design, particularly @”@
in quantum circuits and superconducting adiabatic quantum-flux- ==
parametron logic circuits. Currently, logic optimization techniques zuyabc abcuyz uzT Yy v T Yuv z

for MIG mainly fall into two categories: (i) logic rewriting with
predefined more compact sub-structures and (ii) logic resubstitu-
tion with already existing logic in the Boolean network. However,
the inherent complexity of MIG logic and the limitation imposed
by the input scale of sub-structures significantly impact the
performance of these methods. To address these challenges, this
paper proposes eLogic, a novel depth-oriented MIG logic rewriting
framework using e-graphs, to minimize the depth and size of MIG.
The eLogic utilizes the e-graphs, a data structure for efficient
computation with equalities between terms, to minimize the depth
and size of the cone delimited by the cut. The experimental
results on the EPFL benchmark demonstrate the effectiveness
of eLogic. It is noteworthy that elLogic is open-sourced on
https://github.com/Flians/eLogic.

Index Terms—Logic synthesis, logic rewriting, majority-inverter
graph, e-graph.

I. INTRODUCTION

Logic synthesis is a crucial step in the design and imple-
mentation of digital circuits. It involves the translation of a
high-level hardware description into a detailed and optimized
gate-level representation. This process plays a significant role in
modern digital design methodologies, as it enables designers to
efficiently transform abstract design specifications into practical
and efficient hardware implementations. Throughout this pro-
cess, various presentation structures are commonly employed
to represent and analyze digital circuits at different levels of
abstraction, particularly at the Boolean network level. These
structures are instrumental in facilitating the design, optimiza-
tion, and verification of complex digital systems. Among them,
the AND-Inverter graph (AIG) [1] is the most widely used
logic representation in logic synthesis, alongside the Majority-
Inverter graph (MIG) [2], the XOR-AND-Inverter graph (XAG)
[3], and the XOR-Majority-Inverter graph (XMG) [4]. Recent
studies [2], [5] show that the MIG not only encompasses the
function represented by the AIG but also yields a more com-
pact representation for a given logic function compared with
the AIG. Therefore, MIG-based logic function designs have
attracted more and more attention, particularly for emerging
technologies and advanced computing paradigms [6]-[10].

Currently, many Boolean optimization techniques have been
proposed for MIGs and can be summarized as two categories: 1)
Boolean resubstitution [11]-[13] and ii) Boolean rewriting [14],
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Fig. 1. MIG logic optimization usually requires a large cut size. (a)
shows the depth optimization for a 6-cut of node f. (b) shows the
size optimization for a 5-cut of node f. (M) represents a node with a
3-input majority function.

[15]. Boolean resubstitution techniques focus on optimizing
a specific node by replacing it with a new function derived
from its local neighborhood. However, these techniques are
limited in their ability to explore the solution space, as they
only consider functions that can be formed using the existing
nodes in the local neighborhood. On the other hand, Boolean
rewriting techniques utilize a set of predefined rewriting rules to
transform subgraphs into more efficient representations. These
techniques can explore a broader solution space by applying
various rewriting rules, but for MIGs, they typically require a
large cut size to achieve significant optimization. For example,
as shown in Fig. 1, optimizing the depth of node f requires a
6-cut (Fig. 1(a)), while optimizing the size of node f requires
a 5-cut (Fig. 1(b)). The need for large cut sizes can lead to
increased computational complexity and longer optimization
times, especially in state-of-the-art rewriting techniques using
exact synthesis [14], [15].

To address these challenges, we propose eLogic, an e-graph-
based logic rewriting framework for MIGs. The e-graph [16],
[17] is a data structure that efficiently represents a large number
of equivalent expressions by grouping them into equivalence
classes. By systematically applying rewrite rules until satura-
tion, e-graphs naturally handle the complex multi-variable MIG
transformations while avoiding the exponential search complex-
ity faced by traditional exact synthesis methods on large cuts.
This enables eLogic to achieve improved optimization results
in terms of both depth and size reduction for MIGs.

Overall, the main contributions of this work are as follows:

o We introduce eLogic, an open-source MIG logic rewriting
framework based on e-graphs, which enables efficient and
effective MIG logic optimization.

e We develop an intermediate language to represent MIG
functions in the e-graph structure, along with rewriting
rules to explore circuit topologies with larger cut sizes.


https://github.com/Flians/eLogic

o We combine e-graph rewriting on large cuts with exact
synthesis using don’t cares on small cuts to optimize both
depth and size.

« We evaluate eLogic on the EPFL benchmark and demon-
strate that it outperforms existing state-of-the-art MIG
optimization techniques in both depth and size.

II. PRELIMINARIES
A. Majority-Inverter Graph

As a directed acyclic graph, the MIG is a logic representation
structure composed of nodes with the majority function and
regular/complemented edges indicating the presence/absence
of an inverter (—). The majority function produces an output
based on the majority of its inputs. The node usually has three
inputs and operates at a three-input majority function, denoted
as M(z,y,z) = (x Ay)V(zAz)V (yAz). Since the majority
function can represent the AND (A) logic operation, such as
x ANy = M(x,0,y), the MIG can extend the representation
capabilities of the AIG, i.e., MIG D AIG [5]. Equation (1)
shows the five transformations [5], which form a sound and
complete axiomatic system for the MIG-based Boolean algebra.
Commutativity (Q.C) :
M(a:,y,z) = M(yvmvz) =
Majority(Q2. M) :

ifltx =y) : M(z,x,2) = M(y,y,2) =x =1y
{if(x =-y): M(z,~xz,2) = M(~y,y,2) =z
Q { Associativity (2. A) : (D
M (z,u, M (y,u,2)) = M (z,u, M(y,u,x))

Distributivity (Q2.D) :

M (z,y, M(u,v,2)) = M (M(z,y,u), M(z,y,v), 2)
Inverter Propagation(€2.7) :

M (:C, Y,z ) =

These axioms often involve a large number of input variables,
especially for Distributivity with 5 variables, which poses
significant challenges for traditional exact synthesis methods
due to the exponential number of potential equivalent ex-
pressions that must be explored. Furthermore, based on these
axioms, various theorems can be derived to facilitate MIG
manipulation. For instance, Fig. 2 illustrates the derivation of
the Complementary Associativity theorem (¥.C):

M (x,u, M (y,~u,z)) = M (x,u, M(y,z,2)), 2)
which is not included in the original axioms but is useful
for MIG transformations. These axioms and derived theorems

enable systematic manipulation and optimization of MIGs
through a series of transformations.

M(z,y,x)

M(‘\l‘, Y, "Z)

B. Logic Rewriting

Several established logic-rewriting frameworks have demon-
strated strong optimization capabilities. Early approaches in-
clude map-based logic optimization techniques [18] and DAG-
aware logic rewriting [19]. More recently, heuristic logic resub-
stitution [13] and Boolean matching with don’t cares [15] have
achieved substantial reductions in circuit size. Among these,
logic rewriting with don’t cares has emerged as a particularly
effective technique for MIG optimization.
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Fig. 2. The derivation of complementary associativity.

In general, logic rewriting with don’t cares proceeds in
three steps: (i) partitioning a Boolean network into subsets by
constructing multiple cut sets for each node, (ii) computing
don’t cares for each cut, and (iii) performing Boolean matching
with these don’t cares. However, this method faces two key
challenges. First, computing don’t-cares per cut is computation-
ally expensive and scales poorly with cut size. Second, Boolean
matching relies on a predefined library obtained via exact
synthesis, which is itself limited by cut size. Consequently, the
effectiveness of current methods is fundamentally constrained
by cut size, motivating the need for a rewriting method that can
efficiently handle larger cuts, which is the focus of this work.

C. E-Graphs

Equality saturation [17] is a program optimization technique
that systematically explores a space of equivalent programs
by applying rewrite rules to generate semantically equivalent
expressions. Unlike traditional methods, which apply transfor-
mations sequentially, equality saturation uses an e-graph [16] to
represent and manipulate a large set of equivalent expressions
simultaneously. This enables exhaustive exploration of the
optimization space, often yielding better results.

The e-graph is a compact data structure that represents
equivalence classes of expressions, where nodes correspond
to expressions and edges denote equivalences. By sharing
common sub-expressions and supporting efficient union-find
operations, e-graphs reduce redundancy and memory overhead
while maintaining a rich set of equivalent expressions. The
equality saturation process consists of two phases: (1) satu-
ration, where rewrite rules are applied exhaustively to grow
the e-graph, and (2) extraction, where the optimal program is
selected by assigning costs to expressions and choosing the
lowest-cost representative.

A key advancement in this field is egg [20], a highly
optimized toolkit for equality saturation. The egg provides
a flexible framework for defining rewrite rules, performing
saturation, and extracting optimized programs. Its efficiency
and scalability have made it a popular choice for tasks such
as compiler optimizations [21], algebraic simplification [22],
and EDA, involving high-level synthesis (HLS) [23]-[25] and
AIG-based logic optimization [26]. Hence, this paper leverages
the capabilities of e-graphs and egg to address the challenges
of MIG logic rewriting, enabling efficient exploration of large
cut sizes and complex transformations.

III. E-GRAPH CONSTRUCTION FOR MIG REWRITING

A. Intermediate Language for MIG Representation

To leverage the e-graph structure for MIG rewriting, we first
need to define an intermediate language that can accurately



represent MIG functions within the e-graph. This language
should capture the essential elements of MIGs, including major-
ity nodes and inverter edges, while also being compatible with
the e-graph’s capabilities for representing equivalence classes.
We define the intermediate language using a set of operators
and constructs that correspond to the components of an MIG.
The primary operator is the majority function, denoted as ‘M’,
which takes three inputs. The inverter is represented using
a unary operator, denoted as ‘—’, which can be applied to
any input or output of the majority function. Additionally, we
include constructs for primary inputs and constants (0 and 1)
to complete the representation. The syntax of the intermediate
language can be formally defined as follows:

o Primary Inputs (PI): The input variables of the MIG.
« Constants: The binary constants 0 and 1.
o Expressions: £ := (M EEE)|(—~E)|piePI|0] 1

This intermediate language allows us to construct e-graphs that
accurately reflect the structure and functionality of MIGs. Each
expression in the language corresponds to a node or subgraph
in the MIG, enabling us to perform rewriting operations directly
on the e-graph.

B. Rewriting Rules for MIG Rewriting

To effectively utilize the e-graph for MIG rewriting, we
need to define a comprehensive set of rewriting rules that
can transform expressions in our intermediate language while
preserving their semantics. These rules should be derived from
the axioms and theorems of MIGs, as well as additional
transformations that facilitate optimization. The rewriting rules
can be categorized into several types:

« Axiomatic Rules: These rules are directly derived from
the five MIG axioms shown in Equation (1). The Commu-
tativity (€2.C), Associativity (€2. A), Distributivity (2. D),
and Inverter Propagation (£2.I) axioms are translated into
bidirectional rewrite rules to enable systematic exploration
of equivalent MIG representations. The Majority axiom
(2. M) provides unidirectional simplification rules:

Mzzz)==z
Mz (—z)2)==z
which reduce expressions when duplicate or complemen-
tary inputs are detected, but cannot be applied in reverse
as this would introduce new variables.

o Derived Theorems: These rules are based on theorems

that can be derived from the axioms, including

3)

— Complementary Associativity:
MzuMy(uz)eMzu(Myzz) @)
— Complementary Majority:
Mazy(-y) e (Maya) (5)
- XNOR y® z=M(1,M(0,y,z),~-M(1,y, 2)):
(Maz(MOyz)(~(M1ly2)) &

M1(MOyz) (- (M1y2)) O

(MO

- XOR y @z = M(0,~M(0,y,2), M(1,y,2)):
Mz (=(MOyz) (Mlyz2) e
Mlz (MO(-(MO0y=2)(M1yz)))
o Optimization Rules: These rules involve transformations
of constants and primary inputs, including

- Constants: (- 0)< 1land (-1) <0
— Primary Inputs: (- (- 2)) &«

)

By applying these rewriting rules within the e-graph, we can
systematically explore a wide range of equivalent expressions
for a given MIG function. The e-graph structure allows us
to efficiently manage and combine these expressions, enabling
effective optimization through equality saturation.

IV. MIG REWRITING

After constructing the e-graph with the defined intermediate
language and rewriting rules, we can proceed to the MIG
rewriting. This section outlines the process of rewriting MIGs
using the e-graph, focusing on the extraction of optimized
representations based on a defined cost model.

A. E-Graph-based Subgraph Rewriting

The e-graph-based subgraph rewriting process involves uti-
lizing the e-graph to explore and identify optimal representa-
tions of a given MIG function. This process involves two main
phases: saturation and extraction. The saturation phase involves
iteratively applying the rewriting rules defined in Section III-B
to the e-graph until no new equivalence classes can be formed.
This process ensures that all possible equivalent expressions
for the MIG function are represented within the e-graph. The
saturation process is implemented using a worklist algorithm,
where each time a rule is applied, the resulting expressions
are added to the worklist for further processing. The saturation
continues until the worklist is empty, indicating that no further
transformations are possible.

Once the e-graph is fully saturated, we proceed to the
extraction phase. To guide the extraction of optimized MIG
representations from the e-graph, we need to define a cost
model that evaluates the quality of different expressions based
on their depth and size. The cost model C'(E) of an expression
E is defined as a tuple {d, m,n}, including the following parts:

o Depth Cost: The depth of an expression is defined as the

maximum number of majority nodes on any path from an
input to the output. The depth cost can be calculated as:

d(E) = max depth of majority nodes in E.  (8)

« Size Cost: The size of an expression is defined as the total
number of majority nodes in the expression. The size cost
can be calculated as:

m(E) = number of majority nodes in E. )

o Inverter Cost: The inverter count of an expression is
defined as the total number of complemented edges in the

expression. The inverter cost can be calculated as:
n(E) = number of complemented edges in E.  (10)

Specifically, we define the cost of each element in our defined
intermediate language as follows:



o Primary Input pi € PI. C(pi) = {d(pi),0,0}, where
d(pi) is the initial depth of given input pi.
« Constants: C'(0) = {0,0,0} and C(1) = {0,0,0}.
o Majority: For an expression £ = (M E; E, Es), the
cost is defined as:
C(E) = {1 + max (d(E,), d(Ez), d(E3)),
1 + m(El) + m(EQ) + m(Eg),
n(Ey) +n(Ez) +n(Es)},
where the depth and size both increase by 1 due to the
addition of the majority node.

« Inverter: For an expression E = (- Ej), the cost is
defined as:

C(F) = {d(F1),m(Ey),1+n(Ey)}. (12)

Here, the addition of the inverter does not affect the depth
and size, but the number of inverters increases by 1.

Y

To compare and select the most efficient representation, we
define the addition and comparison operations for the cost
tuples as follows:

o Addition: The addition of two cost tuples C; =
{d1,m1,n1} and Cy = {d3, m2,na} is defined as:
Cl +02 = {max(dl,dg),ml +m2,n1 +Tl2} (13)
« Comparison: The comparison of two cost tuples C; =
{dl,ml,nl} and Cg = {dg,mg,’ng} is defined lexi-
cographically, prioritizing depth, then size, and finally
inverter count:
C1 < Oy if (d1 < dz)\/
(dl = dQ Amy < mg)\/
(dl =dy ANmi =mg Anq <n2).

(14)

During the extraction phase, we employ the default extractor
provided by egg [20]. This extractor adopts a dynamic pro-
gramming approach, iteratively calculating the minimum cost
for each equivalence class to identify the optimal representative.
Consequently, the selected expression minimizes depth first,
then size, and finally inverter count according to the lexico-
graphic ordering defined above. In this way, we implement an
e-graph-based MIG rewriting engine that enables us to system-
atically explore and identify optimal MIG representations.

B. elLogic Framework

The proposed eLogic framework integrates two complemen-
tary methodologies: e-graph-based rewriting for handling large
cuts and exact synthesis with don’t cares for small cuts, as
discussed in Section II-B. This hybrid approach leverages the
scalability of e-graph equality saturation for exploring extensive
search spaces while exploiting the optimality of exact synthesis
for compact functions.

Algorithm 1 summarizes the comprehensive procedure of our
eLogic framework. The procedure iterates over all nodes in
topological order from primary inputs to primary outputs (lines
1-24), thereby ensuring adherence to dependency constraints
while enabling incremental updates. For each node v, the pro-
cedure first calculates its current level (line 2) and determines
whether it is on the critical path (line 3) to guide subsequent cut

Algorithm 1: The eLogic algorithm.

Input: MIG N(V, E), cut size K, window size L, threshold A.
Output: Optimized MIG.

1 for node v € V' in topological order do

original <— calculate the level of node v;

critical < determine if node v is on a critical path;

W < construct a L-input reconvergent window for node v;

G <+ 0, best + {0, original};

for C < enumerate K-cuts of node v do

if |C| > X then

FE < describe cut C using the intermediate language;

Es + perform e-graph-based rewriting for £
prioritizing depth if critical else size;

10 G's < reconstruct MIGs for Es;

e % NS M AW N

11 else

12 S« 0, dc «+ 0

13 if C is contained in VV then

14 S <+ incrementally simulate the window W;

15 L dc < calculate don’t cares for cut C on window

W using S;
16 G's < perform Boolean matching for cut C with dc
L and its truth table in the exact database;
17 for G’ € Gs do
18 cur < calculate the gain from replacing C with G;
19 if ®(critical A cur.n > best.n A cur.l < best.l)V
20 O (—critical A\ cur.n > best.n)V
21 O (cur.n = best.n A cur.l < best.l) then
22 L G+ G, best + cur;

23 if best.n > 0V (best.n = 0 A best.l < original) then
24 L N < replace C with GG in network N;

25 return N.

rewriting. A L-input reconvergent window is then constructed
for node v (line 4) to localize the computation of don’t cares.
Subsequently, the K -cuts of node v are enumerated (lines 6-22)
to identify potential candidates for rewriting.

Specifically, the procedure traverses each K-cut C of node
v. Given that exact synthesis using don’t cares can handle
small cuts efficiently, a threshold A is set to determine the
appropriate approach for each cut (line 7). If the cut size
exceeds )\, e-graph-based rewriting is performed (lines 8-10)
to explore a broader range of equivalent representations. The
cut is described using the intermediate language proposed in
Section III-A (line 8), and e-graph-based rewriting is applied
to generate alternative structures (line 9). During this process,
the optimization priority is dynamically adjusted: depth is
prioritized if the node is on the critical path; otherwise, size
is prioritized. The resulting expressions are then reconstructed
into MIGs Gs (line 10). If the cut size is less than )\, exact
synthesis with don’t cares is employed. Initially, the don’t cares
are calculated when cut C is contained in the window W (lines
13-15). Subsequently, Boolean matching is performed in the
exact database to identify alternative structures G's (line 16).

For each candidate structure G’ € Gs, the gain cur from
replacing C with G’ is calculated (line 18). The gain includes
two parts: {the number n of reduced nodes, the level | of
node v after replacement}. The replacement selection follows
a priority-based strategy with three criteria: @ if node v is on



TABLE 1. Experimental results of the single methods on the EPFL
benchmark [27].

.| Original | resub[13] | rw[I15] | eLogic
Circuit

| size depth | size depth| size depth| size depth
adder 1020 255 893 129 516 130 516 130
bar 3336 12 3208 13 3010 13 3141 12
div 57247 4372 | 52216 4341 | 46360 4308 | 26225 2194
hyp 214335 24801 | 199058 9291 | 156590 9155 | 140037 8923
log2 32060 444 | 32005 444 | 29312 421 | 27659 243
max 2865 287 2837 287 2356 208 2444 133
multiplier | 27062 274 | 26802 273 | 24370 272 25082 174
sin 5416 225 5331 227 4934 195 4864 130
sqrt 24618 5058 | 20801 5882 | 18813 5956 | 22573 4086
square 18484 250 | 18089 164 | 16392 134 | 16824 128
arbiter 11839 87| 11711 87| 11839 87 5511 35
cavlc 693 16 651 16 598 15 663 11
ctrl 174 10 101 9 108 7 127 6
dec 304 3 304 3 304 3 304 3
i2c 1342 20 1247 20 1203 17 1259 11
int2float 260 16 234 16 210 14 239 10
mem_ctrl | 46836 114 | 45349 115| 41180 113 | 44265 94
priority 978 250 817 240 875 241 898 155
router 257 54 257 54 242 52 250 32
voter 13758 70 9372 68 8094 63 7884 57
Ave. ratio ‘ 1.00 1.00 ‘ 091 0.93 ‘ 0.83 0.87 ‘ 0.82 0.63

a critical path, accept when more nodes are reduced without
increasing delay; @ if node v is not on a critical path, accept
when nodes are reduced; ® when node reduction is equal,
accept if delay is improved. If any criterion is satisfied, the
best candidate and its gain are updated (lines 19-22).

If the best candidate achieves improvement, the replacement
is applied to the network (line 24). The algorithm iterates
through all nodes and returns the optimized network (line 25).

V. EXPERIMENTAL RESULTS

The proposed eLogic framework was implemented using
Rust and C++. The e-graph-based MIG rewriting engine was
developed using the egg toolkit [20]. Besides, eLL.ogic employed
the mockturtle [28], an open-source logic network library, to
construct the exact library and implement Boolean matching
with don’t cares. All experiments were conducted on a machine
running Ubuntu 22.04 and equipped with Intel(R) Xeon(R)
Gold 6226R CPU @ 2.90GHz and 256.0 GB of memory. For
parameter configuration, we set the cut size K = 8, the window
size L = 12, and the threshold \ = 4.

We evaluated elLogic on the EPFL benchmark suite [27],
which comprises 20 circuits spanning arithmetic, signal pro-
cessing, and control logic. The circuits are originally described
in AIGER format and synthesized into MIGs using mockturtle’s
aiger_reader command. For comparison, two state-of-the-
art baselines were selected: (i) “resub”: logic resubstitution with
don’t cares [13], and (ii) “rw”: exact logic rewriting with don’t
cares [15]. Both baselines employed a cut size of K = 4 and
a window size of L = 12, and all results were validated for
functional equivalence.

TABLE I presents the experimental results of single methods
on MIG optimization. The “Original” part shows the initial
attributes of input circuits, including “size”, the original number
of majority nodes in the circuit, and “depth”, the original

circuit depth. The “resub” and “rw” parts show the outcomes
of the respective baselines, while the “eLogic” part presents the
results of our approach. Across all benchmarks, eLogic achieves
substantial improvements, reducing the size by 18.27% and
circuit depth by 36.84% on average compared to the original
circuits. Relative to “resub”, eLogic delivers an average size
reduction of 9.91% and depth reduction of 30.41%. Compared
to “rw”, eLogic achieves a 1.16% average size reduction and a
25.40% average depth reduction.

Furthermore, we evaluated the performance of combined
methods, where eLogic was applied before the baselines. TA-
BLE II presents the experimental results of the combined meth-
ods on the EPFL benchmark. The “resub+resub” and “rw+rw”
parts represent the results of applying the same baseline twice,
while the “eLogic+resub” and “eLogic+rw” parts show the
results of applying eLogic followed by the respective baseline.
The “time(s)” part shows the corresponding runtime in seconds
of each method. Experimental results demonstrate that com-
bining eLogic with the baselines leads to further improvements
while maintaining efficiency. When compared with applying the
logic resubstitution method [13] twice, combining eLogic with
resubstitution achieves an average size reduction of 15.12%
and an average depth reduction of 22.53%. In comparison
with applying the exact logic rewriting method [15] twice,
combining elLogic with rewriting achieves an average size
reduction of 4.26% and an average depth reduction of 20.17%.

In terms of runtime efficiency, eLogic is slightly slower.
This is because the e-graph-based rewriting engine starts from
scratch for each subgraph input. This means that every time
a new subgraph is considered, the e-graph is rebuilt and
all rewrite rules are reapplied from the beginning. Unlike
traditional methods that reuse previous computations or in-
crementally update the graph, eLogic does not retain any
intermediate optimization state between subgraphs. This re-
peated initialization and exhaustive rewriting for each subgraph
increase computational overhead. To address this issue, we
also construct a library to store all optimized MIGs, thereby
speeding up the rewriting process. As a result, eLogic can
maintain reasonable efficiency and complete optimization for
all benchmarks within 30 minutes.

VI. CONCLUSION

This paper presented eLogic, an e-graph-based logic rewrit-
ing framework for MIGs. In eLogic, e-graph-based logic rewrit-
ing is applied to large cuts, while exact synthesis using don’t
cares is employed for small cuts. This hybrid approach enables
efficient and effective optimization of both circuit depth and
size. We developed an intermediate language and a comprehen-
sive set of rewriting rules to systematically explore the solution
space, and proposed a cost model to guide the extraction of
optimal MIG representations. Experimental results on the EPFL
benchmark suite demonstrate that eLogic consistently outper-
forms state-of-the-art MIG optimization techniques, achieving
significant reductions in both node count and circuit depth.
Furthermore, combining eLogic with existing methods yields
further improvements, highlighting its versatility and practical
value for digital circuit synthesis.



TABLE II. Experimental results of the combined methods on the EPFL benchmark [27].

Cireuit |  resub [13]+resub [13] | rw [15]4rw [15] | eLogic+resub [13] | eLogic+rw [15]
| size depth  time(s) | size depth  time(s) | size depth  time(s) | size depth  time(s)
adder 893 129 0.23 514 130 0.03 515 130 0.13 514 130 0.07
bar 3208 13 0.64 3010 13 0.26 3007 13 1.12 2981 13 0.90
div 51590 4145 29.49 38210 3020 8.95 25955 2182 223.46 24575 2185 218.21
hyp 199058 9291 200.12 146181 9123 67.33 133608 13891 1234.78 129116 8950  1192.09
log2 32001 444 12.99 29119 421 4.73 26447 265 1421.78 25264 226 1416.43
max 2837 287 0.66 2320 208 0.22 2408 134 4.71 2342 138 441
multiplier 26801 273 8.68 24106 273 3.78 24708 179 216.41 20383 167 21291
sin 5325 227 1.80 4877 195 0.79 4635 142 5.55 4412 130 4.71
sqrt 18568 2892 9.20 11955 2529 3.65 18934 4015 70.21 17383 3995 67.02
square 18088 164 4.01 16105 134 2.43 15149 130 18.43 12913 130 17.00
arbiter 11711 87 3.38 11839 87 0.79 4301 23 4.89 5291 36 4.21
cavlc 648 16 0.10 598 15 0.04 611 11 0.18 619 11 0.15
ctrl 98 9 0.03 104 7 0.01 102 7 0.03 112 5 0.03
dec 304 3 0.06 304 3 0.05 304 3 0.06 304 3 0.05
i2¢c 1236 20 0.16 1195 17 0.08 1187 11 0.28 1204 11 0.25
int2float 230 16 0.04 208 14 0.02 226 11 5.05 222 10 5.05
mem_ctrl 45172 115 19.79 40985 113 4.60 42427 93 428.69 41876 94 419.87
priority 817 240 0.26 863 241 0.10 816 155 0.36 835 156 0.24
router 257 54 0.08 242 52 0.03 246 32 0.08 239 32 0.06
voter 8959 67 2.80 5560 59 1.44 6926 62 11.27 6326 54 10.39
Ave. ratio ‘ 0.91 0.90 0.62 ‘ 0.79 0.82 0.22 ‘ 0.76 0.66 1.16 ‘ 0.74 0.63 1.00

* Ave. ratios of “size” and “depth” are relative to the “Original” in TABLE L
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