
1

TeMACLE: A Technology Mapping-Aware
Area-Efficient Standard Cell Library Extension

Framework
Rongliang Fu, Chao Wang, Bei Yu, and Tsung-Yi Ho Fellow, IEEE

Abstract—Standard cell libraries play a crucial role in mod-
ern VLSI design by providing pre-designed, pre-characterized,
and pre-verified building blocks to simplify the design process.
However, the increasing complexity of circuits demands more
specialized and optimized cells, thereby necessitating the exten-
sion of standard cell libraries. This paper proposes TeMACLE,
a technology mapping-aware area-efficient framework to extend
the standard cell library. Aiming at the area optimization of
digital circuits, TeMACLE extends the given original standard
cell library through two feasible: (i) the area compaction of
standard cells and (ii) the area-efficient facilitation for technology
mapping. TeMACLE employs K-feasible cones to extract sub-
circuits and designs a sub-circuit encoding method to divide
them. Then, an SAT-based sub-circuit matching algorithm is
proposed to identify all equivalent sub-circuits further. Finally,
new standard cells are determined by a technology mapping-
aware area-efficient strategy. The experimental results on the
EPFL benchmark using the FreePDK45 process design kit show
the effectiveness and efficiency of TeMACLE. Notably, TeMACLE
is available at https://github.com/Flians/TeMACLE.

Index Terms—Standard cell library extension, technology map-
ping, area optimization, circuit encoding, circuit matching

I. INTRODUCTION

THE field of very large-scale integration (VLSI) design
has witnessed significant advancements in recent years,

leading to the creation of highly complex integrated circuits.
Standard cell libraries have emerged as a fundamental compo-
nent in IC design, providing designers with pre-designed, pre-
characterized, and pre-verified cells that facilitate the design
process. However, with the increasing complexity of circuit
design, there arises a necessity to extend standard cell libraries
to include additional cell variants tailored to specific design
requirements [1].

The significance of standard cell library extension lies in the
enhanced flexibility it offers to designers. By extending the

The research work described in this paper was conducted in the JC STEM
Lab of Intelligent Design Automation funded by The Hong Kong Jockey Club
Charities Trust and was supported in part by the Research Grants Council
of Hong Kong SAR (Grant No. CUHK14207523); in part by the Research
Grants Council of Hong Kong SAR (Grant No. CUHK14208021); in part
by the Key Research and Development Program of Jiangsu Province (Grant
No. SBE2023020263).

Rongliang Fu, Bei Yu, and Tsung-Yi Ho are with the Department of
Computer Science and Engineering, The Chinese University of Hong Kong,
Hong Kong SAR. E-mail: {rlfu, byu, tyho}@cse.cuhk.edu.hk.

Chao Wang is with the School of Integrated Circuits, Southeast University,
China, and the National Center of Technology Innovation for EDA, China.
E-mail: wangc@seu.edu.cn.

C

INVX1

g3

OR2X1
g1

AND2X1
g2

INVX1
g3

Y=!C*(A+B)

Y

AND2X1

g2

A B

OR2X1

g1

Fig. 1 An example of merging and compacting a sub-circuit
comprising three standard cells.

original standard cell library to encompass a broader range
of standard cell options, designers gain the ability to select
standard cells that better align with their design specifications.
This flexibility empowers designers to optimize their circuits
for critical metrics such as power, performance, and area
(PPA). However, the simple usage of large standard cells may
result in a significant area overhead in the final design [2].
To mitigate this issue, the generation of regular complex cells
[3], particularly compound gates [4], has become increasingly
appealing. Nonetheless, the efficient and scalable synthesis
methodologies for these complex cells still require further
research to address the emerging challenges.

Existing research primarily addresses the automated gener-
ation of standard cells, as evidenced by works such as [4]–
[10]. These works have achieved and optimized the synthesis,
placement, and routing of standard cells. Additionally, several
investigations [11]–[13] have explored methods to expand the
standard cell library. For instance, Pilato et al. [11] focused
on the identification of functionalities to extend the given
standard-cell library. Kiamehr et al. [12] undertook the repli-
cation and redesign of library cells with a focus on balancing
the rise and fall delays at the expected lifetime to mitigate
bias temperature instability, thereby delaying transistor aging.
Moreover, AutoCellLibX [13] investigated the impact of the
standard cell library extension on the back-end design. Given
that merging several standard cells into a new cell can lead
to area reduction [14], AutoCellLibX directly selected several
mutually non-overlapping sub-circuits as the extension part
of the original standard cell library by a frequent subgraph
mining algorithm, thereby reducing the circuit area. It is worth
noting that when any updates to the gate-level circuit design

https://github.com/Flians/TeMACLE

necessitate a complete repetition of the standard cell library
extension process in AutoCellLibX. Furthermore, the standard
cells extended by AutoCellLibX exhibit irregular function-
alities, which complicate their reuse, and possess complex
transistor netlists, which pose challenges for their re-synthesis
using existing standard cell synthesis tools.

However, these existing methods lack adequate consid-
eration for the mutual promotion and constraints between
circuit design and standard cell library when extending new
standard cells. On one hand, an increase in the complexity of
functions offered by new standard cells may lead to a more
compact gate-level netlist of the circuit. On the other hand,
the circuit design can guide the extension of the standard
cell library, while its requirement for new standard cells with
complex functionalities may pose significant challenges to
the process of standard cell layout synthesis. Consequently,
the co-optimization of circuit design and standard cell library
can align with the principle of Design and Technology Co-
Optimization (DTCO) [15], which uses design-level power,
performance, and area (PPA) metrics analyses to assess design
rules, cell architecture, and design architectures.

Furthermore, as a crucial step in logic synthesis, technology
mapping plays a pivotal role in the selection of standard cells
during the circuit implementation process with a specific tech-
nology. The intricate nature of new standard cells, character-
ized by a substantial number of inputs and outputs along with
complex functionalities, may cause their inefficient or even
unusable utilization by existing technology mapping tools.
This is where the proposition of a technology mapping-aware
standard cell library extension algorithm becomes crucial.

To support the DTCO, this paper proposes TeMACLE,
a technology mapping-aware standard cell library extension
framework, which aims to reduce the circuit area after technol-
ogy mapping with the extended standard cell library. To fulfill
this aim, TeMACLE considers two potential ways to generate
new standard cells, including (i) merging standard cells for
the area compaction and (ii) incorporating the feedback from
technology mapping. Fig. 1 shows an example of merging
three standard cells for the area compaction. The SPICE netlist
of this sub-circuit can be extracted and then used to synthesize
a new cell with smaller area and equivalent functionality. In
summary, this paper makes the following contributions:

• To the best of our knowledge, this paper proposes the
first technology mapping-aware framework for standard
cell library extension, which is available on GitHub.

• A sub-circuit encoding method is proposed to efficiently
group K-feasible cone-based sub-circuits.

• Sub-circuit exact matching is formulated as the Boolean
satisfiability (SAT) problem, with an SAT-based sub-
circuit matching algorithm proposed to identify all the
same sub-circuits.

• TeMACLE enables the generation of the function ex-
pression, SPICE netlist, and GDSII layout for each sub-
circuit, while also enabling the extraction of the cor-
responding physical information through standard cell
layout synthesis tools.

• Furthermore, a technology mapping-aware strategy is
proposed to select a given number of patterns as final
extended cells.

• Experimental results on EPFL benchmark [16] using the
FreePDK45 [17] process design kit (PDK) show that
following optimization by TeMACLE, the circuit area
is significantly reduced, with an average reduction of
13.97%. Moreover, TeMACLE achieves an average area
reduction of 1.96 times that of the state-of-the-art while
only requiring nearly one-third of its runtime on average.

The remainder of this paper is organized as follows. Sec-
tion II discusses the preliminaries, including the introduction
to standard cell layout synthesis and the reason why the
feedback of technology mapping should be considered and
graph matching techniques are required in the standard cell
library extension process. Section III presents the problem
formulation. Section IV introduces the proposed standard cell
library framework. Section V demonstrates our experiment
setting and evaluation of our framework, followed by a con-
clusion in Section VI.

II. PRELIMINARIES

A. Standard Cell Layout Synthesis

As a critical step in the design and manufacturing of
integrated circuits, standard cell layout synthesis entails the
automatic generation of the physical layout of the correspond-
ing standard cell in terms of an abstract description, such as
a transistor-level netlist or a Boolean function. This process
involves three primary phases: (i) transistor folding, (ii) tran-
sistor placement, and (iii) in-cell routing. Currently, significant
efforts have been devoted to automatic standard cell layout
synthesis generation. For instance, CELLERITY [5] possesses
compatibility with a wide range of process technologies and
provides flexibility in the cell layout template. CDF [4] can
synthesize physical layouts of logic cells from truth table
descriptions or Boolean equations. ASTRAN [6], an open-
source framework for standard cell layout synthesis, adopts
mixed integer linear programming (ILP) to efficiently compact
cell layouts and is competitive with manually designed cells,
thereby selected as the standard cell synthesis tool in this
paper. Additionally, in the face of increasingly complex design
rules associated with standard cell layout in 7 nm technology
and beyond, various studies [7]–[9], [18] have utilized ILP or
satisfiability modulo theories (SMT) solvers to optimize the
standard cell layout synthesis.

In addition to traditional standard cell layout synthesis meth-
ods tailored to specific functions and process technologies,
there is also a growing interest in merging existing standard
cells to generate new standard cells. Previous studies [4],
[13] have demonstrated that this operation can result in area
savings in the layout. Consequently, the abstraction of the
sub-circuit from the gate-level netlist for re-synthesis as a
new standard cell with complex functionality emerges as an
attractive approach for the standard cell library extension.

2

B. Technology Mapping
Technology mapping [19] involves the process of translating

a given logic-level representation of a circuit into a specific
target technology, such as the field-programmable gate array
(FPGA), the application-specific integrated circuit (ASIC),
and emerging circuit technologies [20]–[23]. This process
typically contains three distinct phases: circuit decomposition,
matching, and covering. Circuit decomposition translates the
circuit into a technology-independent representation. Then, the
matching phase analyzes this representation to determine suit-
able standard cell implementations for each part. Finally, the
covering phase selects a set of these alternatives to construct
the final gate-level circuit.

Efficient technology mapping open-source tools [24], [25]
have been developed to address the challenges associated
with mapping complex logic circuits onto target technologies.
These tools take into consideration various design factors
including technology-specific standard cell libraries, circuit
functionality, and resource availability. Their primary objective
is to minimize the key metrics such as area, power, and delay
of the resulting circuit implementation while satisfying the
design constraints. The standard cell library serves as a crucial
input for technology mapping tools and significantly impacts
the quality of the generated gate-level circuit. Therefore, the
extension of the standard cell library should take into account
the feedback obtained from the technology mapping process,
with the aim of continuously enhancing the quality of the
resulting gate-level circuits.

C. Graph Matching
Graph matching is a fundamental problem that involves

the identification of similarities or correspondences between
graphs. Its related algorithms find extensive applications across
various fields, including computer vision, pattern recognition,
bioinformatics, and circuit design. Efficient algorithms [26]
have been developed to address the challenges associated
with graph matching. These algorithms employ techniques
such as graph traversal, pattern matching, and indexing to
efficiently search for subgraph instances within large graphs
while optimizing the computational complexity and memory
requirements and ensuring accuracy and scalability.

In the specific context of circuit matching, graph matching
techniques play a crucial role in identifying equivalent or
similar sub-circuits within a larger circuit. Since the gate-
level circuit consists of numerous standard cells, the occupancy
ratio of each standard cell can serve as an indicator of its
significance for the circuit implementation, particularly in
terms of the circuit area. Consequently, the application of
graph matching techniques can facilitate the identification of
high-frequency sub-circuits that, following layout compaction,
can become potential candidates for the standard cell library
extension.

III. PROBLEM FORMULATION

This section first introduces several related concepts, in-
cluding the graph, Boolean satisfiability, and circuit matching.

Subsequently, our problem formulation is presented.

A. Terminology

Definition 1 (Directed Acyclic Graph). A directed acyclic
graph (DAG) is defined as G(V,E) with a vertex set V , also
denoted as VG, a directed edge set E ⊆ V × V , also denoted
as EG, and no directed cycles. For a vertex v ∈ V , Ei(v) is
the set of its input edges, and Eo(v) is the set of its output
edges. For an edge e ∈ E, es is its source, and et is the set
of its sinks.

A gate-level circuit can be represented by a directed acyclic
graph G(V,E), where vertex set V = I ∪ O ∪ C consists
of the set I of primary inputs (PIs), the set O of primary
outputs (POs), and the set C of logic gates, and edge set
E consists of the circuit nets. The graph has vertex labels
corresponding to the type of logic gates and has no edge labels.
For a vertex v ∈ V , FI(v) and FO(v) represent the set of its
fan-in vertices and its fan-out vertices, respectively. For any
vertex u ∈ FI(v)∪FO(v), there exists a directed edge between
u and v. In addition, for any PI i ∈ I , the set of its fan-in
vertices is empty. For any PO o ∈ O, the set of its fan-out
vertices is also empty. Moreover, for a vertex v ∈ V , TFI(v)
and TFO(v) represent the set of its transitive fan-in vertices
and its transitive fan-out vertices, respectively. For any vertex
u ∈ TFI(v) (u ∈ TFO(v)), there is a path from u to v (from
v to u).

Definition 2 (Cut). A cut Cv of a vertex v is a vertex set such
that any path from a PI to v must pass through at least one
vertex in Cv . These vertices in Cv are called its leaves.

The size of a cut Cv is denoted as the set size |Cv|. When
the size |Cv| of a cut Cv is equal to or less than K, cut Cv

is called a K-feasible cut.

Definition 3 (Cone). A cone Nv of a vertex v is a subgraph
surrounded by v and its cut Cv , containing v and some of
its transitive fan-in vertices, such that a path from any vertex
u ∈ Nv to v exists in Nv .

When the cut size of a cone Nv is equal to or less than K,
i.e.,|Cv| ≤ K, cone Nv is called a K-feasible cone. We can
use a K-feasible cone Nv to construct a sub-circuit, detailed
in Section IV-A.

Definition 4 (Boolean Satisfiability). Given a Boolean for-
mula f(L) of n literals L = (l1, l2, . . . , ln), where li ∈
{True,False}, the Boolean satisfiability (SAT) problem de-
termines whether there exist the values of literals L that
satisfies f(L), i.e., ∃L ∈ {True,False}n, f(L) = True.

For example, an SAT instance with three literals L =
(l1, l2, l3) can be formulated as f(L) = (l1 ∨ l2) ∧ (¬l2 ∨ l3),
where ∨ is logical “or”, ∧ is logical “and”, and ¬ is logical
“not”. Each parenthesized part, e.g., (l1∨ l2), defines a clause.
This example exists literal assignments to satisfy f , e.g.,
l1 = True, l2 = True, and l3 = True.

3

RTL

Logic optimization

Boolean
network

Standard
cell library

Gate-level
netlistTechnology mapping

PDK

Sub-circuit identification

Sub-circuit
collecting

Sub-circuit
encoding

Sub-circuit
matching

Standard cells

Boolean function
extraction

Function retrieval?

Sub-circuits

Standard cell
layout synthesis

Spice netlist
extraction

New standard cell

+ Layout
+ Spice netlist
+ Boolean function

Exist

None
Sub-circuit

selection agent

Spice netlist

Extend

Construct

Boolean funtion
e.g.

Circuit area Initial or
smaller?

Yes

No, discard this standard cell and select the next sub-circuit

Fig. 2 The workflow of our proposed TeMACLE.

Definition 5 (Boolean Function Matching). Given a Boolean
function f(X) and a target Boolean function g(X), where
|X| = n, they are matched if there exists a one-to-one
permutation map ρ: {1, 2, . . . , n} → {1, 2, . . . , n}, where
∀X ∈ {True,False}n, f(X) ≡ g (ρ (X)).

For example, there are two Boolean functions f(X) = (x1∧
x2) ∨ x3 and g(X) = (x1 ∧ x3) ∨ x2 with Boolean variables
X = (x1, x2, x3). There exists a one-to-one permutation map
ρ = {x1 : x1, x2 : x3, x3 : x2} that makes functions f(X) and
g(X) matched.

Definition 6 (Circuit Matching). Given a gate-level circuit S
and a target gate-level circuit G, they are matched if there is
a function: f : VS → VG, where ∀(u, v) ∈ ES , (f(u), f(v)) ∈
EG and ∀(u, v) /∈ ES , (f(u), f(v)) /∈ EG.

When two gate-level circuits are matched, they not only
have the same topology, characterized by an equivalent num-
ber of vertices and edges, but their corresponding Boolean
functions are also matched. Circuit matching can benefit to
identify the sub-circuits with the same SPICE netlist,

B. Problem Formulation

This paper considers the feedback of technology mapping
on standard cell library extension. In this way, even if updates
are made to the gate-level circuit design, an effective gate-level
circuit can still be generated well using the extended standard
cell library. Hence, the problem of technology mapping-
aware standard cell library extension based on merging
existing standard cells can be defined as follows:
Input:

1) A given Boolean network G.
2) An original standard cell library L including l cells
{c1, · · · , cl}.

3) A process technology.

Output: An extended standard cell library L′, where the
logic function and layout can be generated for each new
standard cell.

Constraints:
1) At most T new standard cells {nc1, · · · ,nct} can be

added into the final standard cell library L′, i.e., t ≤ T .
2) Any new standard cell only contains at most N original

standard cells from the original standard cell library L,
i.e., ∀i ∈ [1, t], |nci| ≤ N and ∀cj ∈ nci, cj ∈ L.

3) Any new standard cell has only one functional output
to support current technology mapping tools.

Goal: Minimize the circuit area of the gate-level circuit
G′(V ′, E′) re-generated with extended standard cell li-
brary L′, formulated as follows:

min
∑
v∈V ′

area (v), (1)

where area (v) denotes the area of gate v in library L′.
This problem presents significant challenges to the standard

cell extension. Firstly, the layout synthesis process of standard
cells is time-consuming. It is impractical to carry out the
layout synthesis for all sub-circuit candidates. Moreover, not
all sub-circuits can be synthesizable into new standard cells via
the standard cell layout generator due to constraints imposed
by the given process technology. Hence, Constraints 1 and 2
are introduced to enable a feasible solution to this problem.
Secondly, the characteristics of technology mapping must
be taken into account. Notably, current technology mapping
tools mainly support standard cells with a single output. This
necessitates the introduction of Constraint 3 to ensure that the
generated new standard cells are compatible with the existing
technology mapping tools. Lastly, the structure of the gate-
level circuit may exhibit variability following each technology
mapping iteration, rendering previously identified sub-circuits
as new standard cells obsolete. Consequently, the generated

4

new standard cells must maintain compatibility with the gate-
level circuit with varying structures.

IV. TEMACLE

To address these challenges comprehensively, this section
proposes a technology mapping-aware area-efficient frame-
work, namely TeMACLE, designed for automatic standard
cell library extension. Its overall flow is illustrated in Fig. 2.
TeMACLE integrates the processes of logic optimization,
technology mapping, and standard cell layout synthesis, with a
specific concentration on the identification process of the sub-
circuits to generate new standard cells. Notably, TeMACLE
incorporates the feedback on the circuit area from the tech-
nology mapping process. Following the execution of the logic
optimization and technology mapping processes for a given
Boolean network G using open-source tools and the original
standard cell library, we can obtain an initial gate-level netlist.
Then, we can identify distinct sub-circuits from the gate-level
netlist as the candidates for new standard cells, as detailed
in Sections IV-A to IV-C. Subsequently, we select specific
sub-circuits by the sub-circuit selection strategy proposed in
Section IV-E to attempt the synthesis of their corresponding
standard cell, as detailed in Section IV-D. Finally, generated
standard cells beneficial to the circuit area reduction are
extended into the final standard cell library.

A. Sub-Circuit Collecting

The focus of this paper is on identifying the sub-circuits that
can potentially be candidates for new standard cells. Since
current technology mapping tools mainly support standard
cells with a single functional output, the identification of
sub-circuits can be effectively handled through the utilization
of K-feasible cones, a technique commonly employed in
covering a given Boolean network during technology mapping.
As defined in Definition 3, a cone of a vertex v refers to
a subgraph of its transitive fan-in network, encompassing
all vertices situated along any path from any vertex in the
corresponding cut Cv to v. A K-feasible cone is a special
cone surrounded by a K-feasible cut Cv , where the cut size
|Cv| does not exceed K. In Fig. 3(a), there is a 3-feasible cut
of gate g6, consisting of its three transitive fan-in gates, i.e.,
{g1, g2, g5}. Correspondingly, a 3-feasible cone surrounded
by this cut consists of five gates, i.e., {g1, g2, g5, g4, g6}.

A K-feasible cone Nc associated with a vertex v and its K-
feasible cut Cv can be utilized to construct a sub-circuit. This
sub-circuit has one output port derived from the output of the
root vertex v and |Cv| input ports derived from the K-feasible
cut Cv . The internal vertices within the sub-circuit maintain
the same connection relationships and labels as those in the K-
feasible cone Nc. Notably, it has been experimentally observed
that too many input ports of a standard cell may result in its
low utilization by technology mapping tools. Therefore, the
vertices within the K-feasible cut are regarded as the primary
inputs of the sub-circuit, with their functions and inputs
ignored. This approach helps avoid introducing an excessive

Algorithm 1: The generation of K-feasible cuts and K-
feasible cones.

Input: A gate-level circuit G(V,E) and cut size K.
Output: K-feasible cuts Cs and K-feasible cones Ns .

1 Cs ← {}, Ns ← {};
2 for v ← topological sort(G) do
3 Cs[v]← {{v}};
4 Ns[{v}]← {v};
5 if FI(v) = ∅ then
6 continue;
7 P ← FI(v) \ {p1};
8 Csv ← Cs[p1];
9 Nsv ← {};

10 for Cp1
∈ Csv do

11 Nsv[Cp1
∪ {v}]← Ns[Cp1

∪ {p1}] ∪ {v};
12 for p2 ← P do
13 Cst ← ∅;
14 Csp2 ← Cs[p2];
15 for C1, C2 ← Csv × Csp2

do
16 Ct ← C1 ∪ C2;
17 if |Ct| ≤ K then
18 Cst ← Cst ∪ {Ct};
19 Nsv[Ct ∪ {v}]←

Nsv[C1 ∪ {v}] ∪Ns[C2 ∪ {p2}];
20 Csv ← Cst;
21 for Cv ← Csv do
22 Ns[Cv ∪ {v}]← Nsv[Cv ∪ {v}];
23 Cs[v]← Cs[v] ∪ Csv;
24 return Cs,Ns;

number of input ports for the sub-circuit. Taking Fig. 3(a) as
an example, the vertices in the 3-feasible cut {g1, g2, g5} are
regarded as the primary inputs of the sub-circuit, which only
introduces three input ports for this sub-circuit. In contrast,
directly using the input ports of these vertices as primary
inputs would introduce five input ports. Furthermore, for the
subsequent cell layout synthesis, it is necessary to collect the
gate information, connection relationship, and circuit function
of the sub-circuit to generate its corresponding SPICE netlist.
Hence, how to quickly collect complete information of all sub-
circuits becomes a challenge.

To collect all sub-circuits, how to enumerate all K-feasible
cones becomes critical. Algorithm 1 presents our method of
generating K-feasible cuts and K-feasible cones for a given
gate-level circuit G(V,E) and cut size K. The data structure
Cs functions as a mapping, where each vertex serves as the
key, while the corresponding set of its K-feasible cuts consti-
tutes the value. This structure is employed to systematically
record all K-feasible cuts within the circuit. Similarly, the
data structure Ns operates as a mapping, where the key is
a set that includes the root vertex along with its K-feasible
cut, while the value corresponds to the respective K-feasible
cut. This structure is utilized to meticulously record all K-
feasible cones within the circuit. We first traverse all vertices
within the circuit in order of the topological sort from primary

5

A

Y

INVX1

A B

Y

NOR2X1

A B

Y

NOR2X1

A B C

Y

A B C

Y

3-feasible cut

3-feasible cone

A

Y

INVX1

OUTPUT

INPUTA B

Y

NOR2X1

A B

Y

NOR2X1

C

INPUT:Y-NOR2X1

A sub-circuit as
a standard cell
with function

(a)

Sub-circuit encoding

2 | 3 | 111,1

NOR2X1

NOR2X1=1

INPUT:Y-
NOR2X1:A,B=3

Number of vertices | Cut size |
Out-degrees of nodes

Encoding of the root vertex,
i.e., .

Number of each encoding
of internal vertices, i.e., .

Number of each encoding
of internal edges.

Y is the default output port
of all inputs to the sub-circuit.

Sink port set of each edge contains
all functionally equivalent ports,

i.e., A {A,B} and B {A,B}.

...

NOR2X1:Y-
NOR2X1:A,B=1

...

2|3|111,1|NOR2X1|NOR2X1=1|INPUT:Y-NOR2X1:A,B=3|NOR2X1:Y-NOR2X1:A,B=1

encoding
sub-circuit1, sub-circuit2, ...

...
sub-circuit1, sub-circuit2, ...

hv 1
...

hv

(b) (c)

Fig. 3 (a) initially acquires a 3-feasible cone, and then transforms it into a sub-circuit. (b) shows how to encode the corresponding
sub-circuit. (c) shows the cell layout corresponding to this sub-circuit after automatic layout synthesis by ASTRAN [6] with the
FreePDK45 library [17].

inputs to primary outputs. Since each vertex can construct a
K-feasible cut and a K-feasible cone, we can first record them
(lines 3-4). In cases where vertex v has not fan-in, we simply
move on to the subsequent vertex (lines 5-6). Conversely, if
vertex v possesses a fan-in, we can get its one fan-in vertex
p1 (line 7) and retrieve the corresponding K-feasible cuts of
vertex p1 to partially initialize the cut set Csv for vertex v
(line 8). Then, we can partially initialize the cone set Nsv
for vertex v using the K-feasible cuts of vertex p1 (lines 9-
11). Subsequently, we proceed to traverse the remaining fan-in
vertices P of vertex v (lines 12-20). For each vertex p2, we
use all its K-feasible cuts to complement current partial K-
feasible cuts of vertex v (lines 15-18,20), while generating
the corresponding K-feasible cones (line 19). Finally, after
completing the traversal of all fan-in vertices, we achieve a
comprehensive collection of all K-feasible cuts and all K-
feasible cones associated with vertex v (lines 21-23). The time
complexity of Algorithm 1 is O(|V | ·F ·C2 ·K logK), where
F is the maximum fan-in of a node and C is the maximum
number of cuts of a node.

B. Sub-Circuit Encoding

Following the completion of the sub-circuit collecting, a
lot of sub-circuits are generated based on K-feasible cones.
To find high-frequency items within these sub-circuits, how
to distinguish and match these sub-circuits becomes critical.
Notably, in the context of the gate-level circuit, since vertices
typically represent standard cells and thereby have various
types, the directed graph constructed by the gate-level circuit
is heterogeneous. Moreover, each vertex possesses different
input and output ports, which are usually non-equivalent.
Consequently, these characteristics pose huge challenges in
the process of sub-circuit matching.

To address this problem, this section proposes a novel
encoding method to generate a hash value (hv) for each sub-

circuit. In a sub-circuit structure, it consists of vertices and
directed edges. So, the feature description of vertices and
edges is beneficial for distinguishing different sub-circuits.
For consistency, the primary inputs of the sub-circuit are also
viewed as a kind of vertex with type “INPUT”, while the
output port of the sub-circuit is labeled as ‘Y’. First, vertices
and edges need to be encoded as follows.

• Vertex encoding: Since a vertex is determined by its
corresponding gate type, it is encoded as the gate type.
For instance, the vertex encoding of the vertex g4 in
Fig. 3(a) is “NOR2X1”.

• Edge encoding: Since each gate has multiple ports and not
all its ports are functionally equivalent, the identification
of each edge within a circuit depends not only on its
source and sink ports, but also on its source and sink
vertices. Notably, the edge in the circuit can have multiple
sinks, thereby divided into multiple connections, each of
which features one source and one sink. Besides, there
exists functional equivalence between the input ports of
the gate. For example, the inputs of the “NOR2X1” gate
with the NOR function can be interchanged arbitrarily
without affecting functionality. Consequently, each con-
nection can be encoded as the formulation: “the type of
source vertex:the name of source port–the type of sink
vertex:the set of equivalent ports with the sink port”.
For instance, the edge between the vertex g4 and the
vertex g6 in Fig. 3(a) can be encoded as “NOR2X1:Y–
NOR2X1:A,B”, where two inputs ‘A’ and ‘B’ to vertex
g6 with type “NOR2X1” have functional equivalence.

The sub-circuit can be encoded after determining the
encoding of vertices and edges. As shown in Fig. 3(b), the
encoding of the sub-circuit consists of four parts. The first
part reflects the scale of the sub-circuit, composed of the
number of non-leaf vertices, the cut size, and the out-degrees
of non-root vertices sorted by vertex encoding. The second

6

part records the encoding of the root vertex. The third part
records the number and encoding of internal vertices and sorts
them by vertex encoding. These two parts reflect the vertex
distribution in the sub-circuit. The last part records the number
and encoding of edges and sorts them by edge encoding.
In this way, a sub-circuit can be represented by a string.
For instance, the sub-circuit in Fig. 3(a) can be encoded
as “2—3—111,1—NOR2X1—NOR2X1=1—INPUT:Y-
NOR2X1:A,B=3—NOR2X1:Y-NOR2X1:A,B=1”, where
“111,1” represents that all three primary inputs have an
out-degree of 1, and vertex g4 has an out-degree of 1.

After encoding all sub-circuits, TeMACLE categorizes them
into distinct groups based on their generated hash values, as
shown in the bottom of Fig. 3(b). Each group type can become
a candidate for generating a new standard cell. To exactly
count the number of the same sub-circuits within each group,
an exact matching process among all sub-circuits in each group
is essential. Given that the utilization of sub-circuit encodings
has effectively distinguished most of the distinct sub-circuits,
the scale of each group is acceptable. Therefore, this facil-
itates reducing the workload associated with the subsequent
sub-circuit exact matching process, thereby speeding up the
matching process.

C. SAT-based Sub-Circuit Matching

Although TeMACLE groups all sub-circuits in terms of
the sub-circuit encoding, it is not guaranteed that all sub-
circuits within the same group are identical. Therefore, a
fast sub-circuit function-and-structure-matching approach be-
comes imperative. As described in Section II-C, despite the
availability of numerous graph matching methods for directed
graphs, they may not be suitable for sub-circuit matching when
considering the unique characteristics of circuits. With the
advent of the Davis-Putnam-Logemann-Loveland algorithm
[27] and conflict-driven clause learning [28], modern SAT
algorithms have significantly improved and are widely used
in the electronic design automation field, such as equivalence
checking and automatic test pattern generation. Furthermore,
SATMargin [29] has also demonstrated that the SAT-based
method exhibits superior efficiency compared to depth-first
search (DFS)-based methods in frequent subgraph testing.
Consequently, referring to SATMargin, this section proposes
an SAT-based sub-circuit matching approach to exactly match
sub-circuits in terms of function and structure.

First, the construction of the SAT model is required to
determine whether the two sub-circuits G1 and G2 are identi-
cal. Given that each sub-circuit can be viewed as a heteroge-
neous graph comprising vertices, edges, and their associated
attributes, which determine the function and structure of a gate-
level circuit, a meticulous matching process for these elements
is essential. Consequently, according to Definition 6, this SAT
model contains four parts: (i) vertex matching, (ii) vertex
constraints, (iii) edge matching, and (iv) edge constraints. The
specific definition of these four parts is as follows.

• Vertex matching: For vertices v ∈ G1 with type t(v) and
u ∈ G2 with type t(u), they may be matched only if they

have the same vertex type, i.e., t(v) = t(u). Otherwise,
they cannot be matched. The corresponding clause C1

can be formulated as:

C1 = ∧
v∈G1

((
∨

u∈G2
t(v)=t(u)

lv,u

)
∧

(
∧

u∈G2
t(v)̸=t(u)

¬lv,u

))
,

(2)
where lv,u is a Boolean literal that indicates whether
vertices v ∈ G1 and u ∈ G2 are matched. This clause
ensures that each vertex in sub-circuit G1 can find a
matched vertex with the same type in sub-circuit G2.

• Vertex constraints: Since there exists a situation that
multiple vertices in sub-circuit G1 match the same vertex
in sub-circuit G2 after introducing the vertex matching
clause, the vertex constraints are introduced to ensure
that any two vertices v1 and v2 in one sub-circuit cannot
simultaneously match the same vertex u in the other sub-
circuit, i.e., (¬lv1,u ∨ ¬lv2,u) must be true. The corre-
sponding clause C2 can be formulated as:

C2 = ∧
v1,v2∈G1,u∈G2

or
v1,v2∈G2,u∈G1

(¬lv1,u ∨ ¬lv2,u). (3)

• Edge matching: Any two connected vertices v1 and
v2 in one sub-circuit cannot simultaneously match any
two unconnected u1 and u2 in the other sub-circuit,
i.e., (¬lv1,u1

∨ ¬lv2,u2
) must be true when v1 and v2

are connected and u1 and u2 are not connected. The
corresponding clause C3 can be formulated as:

C3 =

∧
v1,v2∈G1,(v1,v2)∈G1,u1,u2∈G2,(u1,u2)/∈G2

or
v1,v2∈G1,(v1,v2)/∈G1,u1,u2∈G2,(u1,u2)∈G2

(¬lv1,u1 ∨ ¬lv2,u2),

(4)

where (v1, v2) ∈ G1 represents an edge in the sub-
circuit G1 from vertex v1 to vertex v2. On the contrary,
(v1, v2) /∈ G1 represents no edge between vertices v1
and v2 in the sub-circuit G1. This clause ensures that the
matched vertices have the same connection structure.

• Edge constraints: Given that the edge matching clause
only considers the connection relationship, the attributes
of edges also need to be further matched, including source
and sink ports and the type of source and sink vertices,
i.e., the edge encoding introduced in Section IV-B. There-
fore, only if one edge in sub-circuit G1 has the same edge
encoding as the other edge in sub-circuit G2 may they be
matched. The corresponding clause C4 is formulated as:

C4 = ∧
v1,v2∈G1,(v1,v2)∈G1
u1,u2∈G2,(u1,u2)∈G2

t(v1,v2)̸=t(u1,u2)

(¬lv1,u1 ∨ ¬lv2,u2), (5)

where t(v1, v2) represents the edge encoding of the edge
from vertex v1 to vertex v2. This clause ensures that the
characteristics of the two sub-circuits match.

Now all clauses are defined. Consequently, according to
Definition 4, the SAT model of sub-circuit matching can be

7

defined as:

∃{lv,u | v ∈ G1, u ∈ G2}, C1 ∧ C2 ∧ C3 ∧ C4 ≡ True, (6)

where there are a total of |G1|·|G2| Boolean literals. C1 and C2

ensure a one-to-one mapping relationship between the vertices
in the two sub-circuits. C3 and C4 guarantee the edges within
two sub-circuits can be matched under the consideration of
circuit features. Therefore, the determination of the existence
of a solution for this model using the SAT solver can make
sure whether the two sub-circuits G1 and G2 are identical.

Consequently, the proposed SAT-based sub-circuit matching
method can further subdivide each group clustered by the sub-
circuit encoding. Finally, each group represents a specific type
of sub-circuit characterized by identical topology and Boolean
function, with the corresponding number of occurrences of
each sub-circuit being counted. In this way, all distinct sub-
circuits and their respective quantities can be identified.

D. Standard Cell Synthesis

As illustrated in Section II-A, merging existing standard
cells can produce a new standard cell to save the circuit
area. TeMACLE also applies this strategy to generate new
standard cells. After identifying the sub-circuit, TeMACLE
first automatically extracts the Boolean function expression
between the inputs and the output of the sub-circuit according
to the topology of the sub-circuit and the Boolean functions of
vertices within the sub-circuit. However, the resulting Boolean
function expression is usually complex and incomprehensible.
To address this problem, TeMACLE simplifies the extracted
Boolean function expression into the sum-of-products (SOP)
form by the Quine-McCluskey algorithm [30], [31]. The
Quine-McCluskey algorithm is a method used for the mini-
mization of Boolean functions, which facilitates the simpli-
fication of Boolean expressions into a reduced form through
the utilization of prime implicants. Furthermore, it provides
a deterministic methodology for verifying the attainment of
the minimal form of a Boolean function. Hence, the final
Boolean function expression of the sub-circuit in Fig. 3(a) can
be simplified as Y = ¬C ∧ (A ∨B).

Furthermore, in order to acquire the physical information of
the newly generated standard cell, TeMACLE has the capabil-
ity to integrate the automatic standard cell layout synthesis
tool. Specifically, when dealing with a specific sub-circuit,
TeMACLE first uses the SPICE netlists of its internal vertices
to automatically construct its SPICE netlist according to the
interconnections among these internal vertices. Subsequently,
the layout synthesis tool is applied to generate its cell layout
with the given process technology. Fig. 3(c) shows the layout
schematic of the sub-circuit derived from Fig. 3(a), which is
generated by ASTRAN with the FreePDK45 library. In this
way, the area of this new standard cell can be obtained.

It is worth noting that layout synthesis is a time-consuming
process. To minimize redundancy during layout synthesis, the
layout synthesis results of sub-circuits are stored in an auxil-
iary standard cell library with their respective Boolean function
expressions as the identifying key. To improve the efficiency

Algorithm 2: The final flow of TeMACLE.
Input: A given Boolean network G, an original

standard cell library L, a process technology,
K, N , and T .

Output: An extended standard cell library.
1 Map G into gate-level circuit G′ using library L;
2 Calculate the circuit area s of gate-level circuit G′;
3 for i← 0 to T do
4 Collect all sub-circuits with at most N original

vertices from G′ by Section IV-A;
5 Encode and group these sub-circuits by

Section IV-B;
6 Refine the grouping of all sub-circuits within each

group by Section IV-C to obtain all distinct
sub-circuits Q;

7 Sort Q in descending order based on their quantity;
8 flag ← 0;
9 while Q ̸= ∅ do

10 Q← Q \ {g};
11 if the number of g < 2 then
12 flag ← 1;
13 break;
14 Generate g’s function expression, SPICE

netlist, and cell layout using the given process
technology, detailed in Section IV-D;

15 New a standard cell c using g’s function and
layout;

16 L← L ∪ {c};
17 Remap G into G′ using new library L;
18 Calculate circuit area s′ of gate-level circuit G′;
19 if s > s′ then
20 s← s′;
21 break;
22 else
23 L← L \ {c};
24 if Q ̸= ∅ ∨ flag = 1 then
25 break;
26 return extended standard cell library L;

of sub-circuit retrieval, we utilize the Quine-McCluskey al-
gorithm to simplify the Boolean function expression for each
sub-circuit, thereby significantly improving the success rate of
retrieval. Before performing the layout synthesis for a given
sub-circuit, a function retrieval is conducted within this library
to determine the presence of the sub-circuit to be synthesized.
Only in cases where the Boolean function corresponding to
this sub-circuit is not found in the library will the layout
synthesis be performed. Although the introduction of a prede-
fined library may incur extra memory costs, it can significantly
speed up the standard cell library extension process. Hence,
it is essential to achieve the Boolean function matching.
According to Definition 5, we can verify whether a one-to-
one permutation map ρ can make two Boolean functions f

8

TABLE I Experimental results on the EPFL benchmark [16] and FreePDK45 library [17].

Circuit Original AutoCellLibX [13] TeMACLE labellist
gates area (µm2) depth area (µm2) area (%) time (s) ECSize area (µm2) area (%) depth time (s) ECSize

adder128 768 2373.25 193 1900.56 19.92 1381.01 2/4/4/3/3 1884.15 20.61 129 5.18 3/5
bar 2283 5426.52 10 4975.61 8.31 754.39 3/3/3/3/2 4607.51 15.09 9 22.22 3/2/2/4

cavlc 532 1232.38 11 1194.37 3.08 71.97 2/2 1187.73 3.62 10 7.16 2/2/2/2/2
div 42220 109675.88 2213 97629.82 10.98 410.18 2/2/3/3/2 86576.50 21.06 2200 164.19 2/2/2/2/3
hyp 187027 505059.72 10749 468522.11 7.23 367.52 2/2/3/2 415107.84 17.81 10733 818.84 2/2/2/2/2
i2c 1094 2461.95 11 2400.11 2.51 88.63 2/3 2368.51 3.80 11 11.16 2/2/3/2/3

int2float 182 420.49 9 412.43 1.92 439.60 5 407.74 3.03 9 4.08 2/2/3
log2 21827 58706.61 232 55187.01 6.00 604.45 5/2/2/2/3 52795.23 10.07 221 187.50 2/2/2/2/2
max 2694 6006.57 178 5475.46 8.84 311.32 3/2/2/2/3 5002.03 16.72 176 14.91 2/2/3/2/2

mem ctrl 36517 81936.96 74 78879.38 3.73 85.21 2/2/2/2/2 73855.93 9.86 74 233.73 2/2/2/3/2
multiplier 16684 48909.51 179 44385.50 9.25 2353.00 5/4/2/3/2 43687.63 10.68 178 82.97 2/2/2/3/3
priority 1072 2344.15 64 2026.28 13.56 702.76 2/4/3/4/2 1691.72 27.83 64 8.09 2/2/3/2
router 240 569.73 25 551.39 3.22 1121.60 3/2 542.09 4.85 25 2.70 2/2/3/2/2

sin 4145 10882.60 116 10386.81 4.56 243.91 2/2/2/2/3 9609.23 11.70 113 31.75 2/2/2/2/3
sqrt 18140 47752.68 3039 43455.75 9.00 2428.33 3/2/4/4/3 32940.58 31.02 3038 95.61 2/2/2/5/4

square 13895 37336.10 167 35389.53 5.21 363.72 2/3/3/2/3 33215.22 11.04 167 81.64 2/2/2/4/2
voter 9973 28922.49 38 26996.74 6.66 1698.92 2/2/2/2/2 23512.72 18.70 33 51.55 2/2/2/3/2

Ave. ratio 1 1 0.93 0.86 0.96

and g matched by the following SAT model:

∃X ∈ {True,False}n, f(X)⊕ g (ρ (X)) = True. (7)

When this model yields a solution, it indicates that the
permutation map ρ cannot make f and g matched; otherwise, it
can. Consequently, we can traverse all one-to-one permutation
maps (totally n!) to determine whether two Boolean functions
f and g can be matched.

E. Final Flow

Up to this point, this paper has already introduced the
method through which TeMACLE acquires all the differ-
ent sub-circuits along with their corresponding quantities.
Nonetheless, the determination of the final extended standard
cells poses a significant challenge. As discussed at the be-
ginning of Section IV, it is impractical to perform a com-
prehensive exploration of the entire solution space, involving
the synthesis of all sub-circuits into new standard cells, the
selection of any T among them for technology mapping
iteration, and the subsequent determination of the optimal
combination as the final extend standard cells. Consequently,
this section proposes a technology mapping-aware strategy to
choose a maximum of T different kinds of sub-circuits as the
final standard cells, as outlined in Algorithm 2.

Initially, a given Boolean network G is mapped into a
gate-level circuit G′ using the original standard cell library
L, leading to the determination of the original circuit area
s (lines 1-2). Following collecting and grouping all the sub-
circuits within circuit G′ (lines 4-6), |Q| distinct sub-circuits
can be derived, thereby forming the set Q. The set Q is
then arranged in descending order according to the quantity
of each sub-circuit and the number of original standard cells
it contains (line 7). Given the objective of minimizing circuit
area and more occupation of circuit area by sub-circuits with
higher quantities, the area compaction on these sub-circuits
may yield greater area savings. Consequently, each iteration

focuses on selecting the sub-circuit with the highest quantity
as an extended standard cell (lines 9–25). If one sub-circuit
occurs only once, the process of selecting extended standard
cells is prematurely terminated (lines 11-13, 24-25). Once
a sub-circuit is chosen, TeMACLE automatically generates
its function expression using the Quine-McCluskey algorithm
(line 14). Moreover, TeMACLE automatically generates its
SPICE netlist and then synthesizes its cell layout using the
given process technology (line 14). Subsequently, TeMACLE
creates a new standard cell corresponding to the function and
layout of this sub-circuit to extend the standard cell library and
then remaps the original Boolean network with this extended
standard cell library (lines 15–18). If the resulting gate-level
circuit has a smaller area, TeMACLE proceeds to the next
iteration (lines 19–21). Otherwise, TeMACLE discards this
standard cell and continues to select the next sub-circuit (line
23). Finally, the final extended standard cell library containing
a maximum of T new standard cells can be obtained (line 26).

V. EXPERIMENTAL RESULTS

The proposed standard cell library extension framework
TeMACLE1 was implemented using Python language,
and CryptoMiniSat [32], an advanced incremental SAT
solver, was selected to solve our proposed SAT-based
sub-circuit matching model. Furthermore, the experiments
chose ASTRAN as the standard cell layout tool. It can
support FreePDK45 [17], an open-source generic process
design kit with a predictive 45 nm CMOS technology
process. Meanwhile, this paper selected several original
standard cells from the FreePDK45 standard cell library
to construct the original standard cell library. These cells
included “AND2X2”, “AOI21X1”, “BUFX2”, “INVX1”,
“NAND2X1”, “NAND3X1”, “NOR2X1”, “NOR3X1”,
“OAI21X1”, “OR2X2”, “XNOR2X1”, and “XOR2X1”.
Specifically, the SPICE netlists of new standard cells are

1https://github.com/Flians/TeMACLE

9

https://github.com/Flians/TeMACLE

(a)
Y = (B∧C)∨(B∧¬A)∨(C∧¬A)

(b)
Y = (A∧B∧¬C)∨(A∧C∧¬B)∨
(B ∧ C ∧ ¬A) ∨ (¬A ∧ ¬B ∧ ¬C)

Fig. 4 New standard cells generated for “adder128”.

automatically constructed based on the SPICE netlists
of FreePDK45 standard cells and then are synthesized
by ASTRAN [6] to generate their corresponding layouts
that adhere to the design rules of FreePDK45 [17]. The
experiments used the EPFL benchmark [16] to evaluate
TeMACLE and used mockturtle [25], an advanced open-
source logic network library, to carry out logic synthesis
and technology mapping for all benchmark circuits. First,
the node resynthesis algorithm node_resynthesis
with the resynthesis function based on DSD decomposition
dsd_resynthesis was employed to optimize all
benchmark circuits. Then, these optimized circuits were
mapped using the standard cell library through the cut-based
technology mapping algorithm map, where the maximum
number of cuts per node is 24.

In terms of the experimental parameter configuration, the
parameter T serves to establish the upper limit on the number
of new standard cells to be generated. Given the limitation
of practical standard cell library generation cost, this paper
adopts a value of 5 for T . On the other hand, the parameter
N determines the maximum number of original standard cells
contained within the sub-circuit corresponding to each newly
created standard cell. To mitigate the intricacies inherent in
the standard cell layout synthesis process stemming from the
SPICE netlist of new standard cells, N was set to 5. Lastly, the
parameter K indicates the maximum number of inputs to each
new standard cell. Given that an excessive number of inputs
can pose challenges for the existing technology mapping tools,
K was set to 3.

The experiments were executed on the machine with In-
tel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz and 256.0 GB
memory running Ubuntu 22.04. AutoCellLibX [13] was se-
lected as the baseline, which directly extracts non-overlapping
sub-circuits to generate new standard cells. AutoCellLibX used
the same configuration of the parameters T and N . Table I
shows the experimental results. The “Original” part shows the
attributes of benchmark circuits, including the number of used
standard cells (“gates”), the circuit area (“area (µm2)”), and
the circuit depth (“depth”) after technology mapping using

16
32

64
128

256 depth
gates

area

0

1,200

2,400

3,600

4,800

Original TeMACLE

Fig. 5 The generation of full adders with varying bit numbers
using the original and extended standard cell libraries, respec-
tively.

the original standard cell library. The “AutoCellLibX” and
“TeMACLE” parts show the results of the baseline and our
proposed TeMACLE, respectively. Since AutoCellLibX clus-
ters standard cells to identify sub-circuits for compaction, the
resulting extended standard cells are not regular and unsuitable
for technology mapping. Meanwhile, due to the irregular
circuit structure after cell compaction, the circuit depth is not
statistical for AutoCellLibX. Therefore, the “area (µm2)” in
“AutoCellLibX” denotes the circuit area after compacting the
area of sub-circuits corresponding to the extended standard
cells, while the “area (µm2)” and “depth” in “TeMACLE” de-
note the circuit area and circuit depth after technology mapping
using the extended standard cell library, respectively. “area
(%)” denotes the average reduction in circuit area compared
to one obtained using the original standard cell library. “time
(s)” denotes the runtime in seconds for performing the standard
cell library extension. Lastly, “ECSize” denotes the number of
original standard cells within the sub-circuit corresponding to
each new cell. For instance, in the case of circuit “adder128”
in TeMACLE, “3/5” denotes that TeMACLE has generated
two new standard cells for circuit “adder128”, and their corre-
sponding sub-circuit contains three and five original standard
cells from the original standard cell library, respectively.

Overall, compared to the circuits based on the original stan-
dard cell library, TeMACLE achieved a significant reduction
in the circuit area, specifically by 13.97% on average. Mean-
while, the circuits generated using the standard cell library
extended by TeMACLE exhibited an average reduction of 1.96
times in the circuit area compared to those generated using
the standard cell library extended by AutoCellLibX. Specif-
ically, TeMACLE demonstrated a significant advantage over
AutoCellLibX across all testcases. In particular, TeMACLE
demonstrated superior performance on large circuits, such as
“div”, “hyp”, “mem ctrl”, and “sqrt”. TeMACLE showcased

10

notable improvements on these four circuits, with circuit area
reductions of 1.92, 2.46, 2.64, and 3.45 times those achieved
by AutoCellLibX, respectively.

As for efficiency, the runtime on each testcase was accept-
able, and all tasks were completed by TeMACLE within less
than 900 s. In general, the runtime required by TeMACLE
is nearly one-third that of AutoCellLibX on average. The
cell layout synthesis process in AutoCellLibX accounts for a
significant portion of the runtime, primarily due to the extrac-
tion of irregular and large sub-circuits. In contrast, TeMACLE
mitigates this issue by employing a predefined library of pre-
synthesized sub-circuits, resulting in a reduced runtime contri-
bution from this process. Instead, the runtime occupation of the
collection and encoding of sub-circuits becomes apparent in
TeMACLE. Although AutoCellLibX exhibits a shorter runtime
on the “hyp” and “mem ctrl” circuits, it primarily focuses on
extracting non-overlapping sub-circuits without accounting for
the compatibility of new standard cells across diverse circuit
structures and the complexity involved in standard cell layout
synthesis. Consequently, AutoCellLibX tends to require more
time to achieve less area reduction in most circuits. In contrast,
TeMACLE considers these factors and thus needs basic time
to produce and handle sub-circuits. Nevertheless, TeMACLE
still demonstrates an acceptable runtime on these two circuits,
particularly given its significant advantages in terms of circuit
area savings.

Moreover, the compatibility and effectiveness of the stan-
dard cell library extended by TeMACLE were substantiated.
TeMACLE introduced two new cells for the “adder128” cir-
cuit, whose respective functions and layouts are illustrated in
Fig. 4. Notably, the cell in Fig. 4(a) implements a 3-input
majority function with an inverter in front of the input port A,
while the other in Fig. 4(b) implements a 3-input exclusive-
OR (XOR) function with an inverter in front of input port
C. This just aligns with the multi-digit binary coded decimal
(BCD) adder design [34], where the summary bit and the
carry-out bit can be derived by a 3-input majority function and
a 3-input exclusive-OR function, respectively. Subsequently,
this extended standard cell library was used for technology
mapping of 16, 32, 64, and 256-bit full adders, respectively.
Fig. 5 shows the circuit depth, gate count, and circuit area
of generated full adders with varying bit numbers using
the original and extended standard cell library, respectively.
Noteworthy, the generated circuits still had an average area
reduction of 20.64% compared to those generated using the
original standard cell library. This substantial decrease in the
circuit area demonstrated the compatibility and effectiveness
of TeMACLE’s results.

Finally, To demonstrate the improvement of our framework
on the high-density standard cell library, this paper also
selected ASAP7 [33], an open-source generic process design
kit with a predictive 7 nm CMOS technology process, to
synthesize the design rule check (DRC)-clean standard cell
layouts by an industrial standard cell layout generation tool.
This paper initially selected the above standard cells from
the ASAP7 7.5-track standard cell library [33] to construct

the original standard cell library, and then used AutoCellLibX
and TeMACLE to extend the original library. Table II shows
the experimental results. Overall, TeMACLE demonstrated
a significant advantage over AutoCellLibX in all testcases.
Specifically, compared to the circuits based on the initial
standard cell library, TeMACLE had an average circuit area
reduction of 18.30%. Furthermore, the circuits generated using
the standard cell library extended by TeMACLE achieved an
average reduction in the circuit area of 6.12 times compared
to those generated using the standard cell library extended by
AutoCellLibX, while maintaining an average runtime of only
one-seventh.

VI. CONCLUSION

This paper highlighted the importance and necessity of
standard cell library extension in VLSI design and proposed
TeMACLE, a technology mapping-aware area-efficient frame-
work for standard cell library extension. TeMACLE uses
a novel sub-circuit encoding to group all K-feasible cuts
and then uses an SAT-based sub-circuit matching method
to calculate the frequency of each sub-circuit. Subsequently,
TeMACLE iteratively selects sub-circuits in descending order
of their frequency, where the layout of the new cell de-
rived from each sub-circuit is synthesized by ASTRAN with
FreePDK45 technology. The final standard cells beneficial to
area-efficient technology mapping are selected to extend the
standard cell library. The experimental results on the EPFL
benchmark demonstrated the effectiveness and efficiency of
TeMACLE.

This paper focuses on circuit area optimization through
the extension of the standard cell library. While the circuit
area is a primary concern, other metrics, including the timing
and power consumption, also play significant roles in circuit
design. In future work, we will explore timing and power
consumption optimization by the extension of the standard
cell library. This necessitates that standard cell layout tools
provide more comprehensive data to construct the liberty file
containing cell timing and power information. Additionally,
the selection of sub-circuits also needs to consider the metrics
of standard cell layout synthesis for better layouts, such as
design rule compliance, pin accessibility, area, and timing.

REFERENCES

[1] R. Reis, “Design automation of transistor networks, a new challenge,” in
IEEE International Symposium on Circuits and Systems (ISCAS), 2011,
pp. 2485–2488.

[2] J.-s. Seo, I. L. Markov, D. Sylvester, and D. Blaauw, “On the de-
creasing significance of large standard cells in technology mapping,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2008, pp. 116–121.

[3] M. Lefebvre and D. Marple, “The future of custom cell generation
in physical synthesis,” in ACM/IEEE Design Automation Conference
(DAC), 1997, pp. 446–451.

[4] J. Togni, F. Schneider, V. Correia, R. Ribas, and A. Reis, “Automatic
generation of digital cell libraries,” in Symposium on Integrated Circuits
and Systems Design (SBCCI), 2002, pp. 265–270.

[5] M. Guruswamy, R. Maziasz, D. Dulitz, S. Raman, V. Chiluvuri, A. Fer-
nandez, and L. Jones, “CELLERITY: A fully automatic layout synthesis
system for standard cell libraries,” in ACM/IEEE Design Automation
Conference (DAC), 1997, pp. 327–332.

11

TABLE II Experimental results on the EPFL benchmark [16] and ASAP7 process design kit [33].

Circuit Original AutoCellLibX [13] TeMACLE
gates area (µm2) depth area (µm2) area (%) time (s) ECSize area (µm2) area (%) depth time (s) ECSize

adder128 769 94.17 193 85.07 9.66 5467.74 2/4/4/4 65.32 30.64 129 6.54 2/5/3
bar 2456 265.02 10 253.71 4.27 2935.29 3/3 204.02 23.02 9 13.24 2/2/2/3
dec 316 27.88 4 27.12 2.72 843.84 4/3 26.30 5.65 3 3.66 2/2
div 43755 4480.59 2213 4241.57 5.33 6729.66 3/3/3/2/2 3551.27 20.74 2200 212.67 2/2/3/2/2
hyp 185740 21314.22 10749 20696.91 2.90 2022.29 2/2/2/2 17881.03 16.11 10733 853.90 2/2/2/2/3
i2c 1081 112.81 11 112.81 0.00 14.51 3/3/3/2 94.65 16.09 11 7.14 2/3/4/2/2

int2float 182 19.68 9 19.68 0.00 11.05 3/2/3/3/2 16.42 16.59 9 4.70 2/3/2/4
log2 22168 2588.82 232 2524.79 2.47 1292.03 2/2/2/2/2 2123.45 17.98 221 134.78 2/3/4/2/2
max 2744 258.49 178 245.10 5.18 1578.50 3/2/2/2/3 215.14 16.77 177 38.03 2/2/2/3/3

mem ctrl 35661 3607.95 74 3521.38 2.40 337.78 2/3/3/2/2 3380.17 6.31 74 169.82 2/2/2/3/3
multiplier 17852 2069.38 179 2000.04 3.35 3303.80 2/2/2/3/2 1866.87 9.79 178 76.69 2/2/2/3/3
priority 1195 110.41 64 103.24 6.50 3034.58 3/2/2002 73.53 33.41 64 7.46 2/2/3/4
router 235 27.10 25 26.81 1.08 4448.85 3 22.60 16.62 25 4.10 2/3/4/3/2

sin 4134 473.38 116 460.82 2.65 1344.33 2/2/2/2/2 381.44 19.42 113 28.34 2/3/4/2/2
sqrt 18103 2140.17 3039 2082.99 2.67 2745.66 2/3/2/2 1375.56 35.73 3038 135.95 2/2/2/3/4

square 14290 1595.18 167 1567.19 1.75 512.27 2/3/2 1472.46 7.69 167 106.26 2/2/2/2/2
voter 9780 1150.04 38 1124.09 2.26 7338.22 3/2/2/2 915.58 20.39 32 64.63 3/2/2/4/5

Ave. ratio 1 1 0.97 0.82 0.95

[6] A. M. Ziesemer and R. A. d. L. Reis, “Simultaneous two-dimensional
cell layout compaction using MILP with ASTRAN,” in IEEE Annual
Symposium on VLSI (ISVLSI), 2014, pp. 350–355.

[7] P. Van Cleeff, S. Hougardy, J. Silvanus, and T. Werner, “BonnCell:
Automatic cell layout in the 7-nm Era,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 39, no. 10,
pp. 2872–2885, 2020.

[8] C.-K. Cheng, C.-T. Ho, D. Lee, B. Lin, and D. Park, “Complementary-
FET (CFET) standard cell synthesis framework for design and system
technology co-optimization using SMT,” IEEE Transactions on Very
Large Scale Integration Systems (TVLSI), vol. 29, no. 6, pp. 1178–1191,
2021.

[9] Y.-L. Li, S.-T. Lin, S. Nishizawa, H.-Y. Su, M.-J. Fong, O. Chen,
and H. Onodera, “NCTUcell: A DDA- and delay-aware cell library
generator for FinFET structure with implicitly adjustable grid map,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 41, pp. 5568–5581, 2022.

[10] C.-K. Cheng, A. B. Kahng, H. Kim, M. Kim, D. Lee, D. Park, and
M. Woo, “PROBE2.0: A systematic framework for routability assess-
ment from technology to design in advanced nodes,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 41, no. 5, pp. 1495–1508, 2022.

[11] C. Pilato, F. Ferrandi, and D. Pandini, “A fast heuristic for extending
standard cell libraries with regular macro cells,” in IEEE Annual
Symposium on VLSI (ISVLSI), 2010, pp. 23–28.

[12] S. Kiamehr, M. Ebrahimi, F. Firouzi, and M. B. Tahoori, “Extending
standard cell library for aging mitigation,” IET Computers & Digital
Techniques, vol. 9, no. 4, pp. 206–212, 2015.

[13] T. Liang, J. Chen, L. Li, and W. Zhang, “AutoCellLibX: Auto-
mated standard cell library extension based on pattern mining,” 2022,
arXiv:2207.12314.

[14] K. A. C. Albinagorta, C. Conceição, C. S. Cardenas, and R. Reis,
“Exploring area and total wirelength using a cell merging technique,”
in IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), 2019, pp. 329–334.

[15] G. Northrop, “Design technology co-optimization in technology defini-
tion for 22nm and beyond,” in Symposium on VLSI Technology (VLSIT),
2011, pp. 112–113.

[16] L. Amarù, P.-E. Gaillardon, and G. De Micheli, “The EPFL combina-
tional benchmark suite,” in IEEE/ACM International Workshop on Logic
Synthesis, 2015.

[17] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis,
P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal,
“FreePDK: An open-source variation-aware design kit,” in IEEE In-
ternational Conference on Microelectronic Systems Education (MSE),
2007, pp. 173–174.

[18] K. Baek and T. Kim, “CSyn-fp: Standard cell synthesis of advanced
nodes with simultaneous transistor folding and placement,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 43, no. 2, pp. 627–640, 2024.

[19] E. Testa, M. Soeken, L. G. Amar, and G. De Micheli, “Logic synthesis
for established and emerging computing,” Proceedings of the IEEE, vol.
107, no. 1, pp. 165–184, 2019.

[20] G. De Micheli, “Logic synthesis for emerging technologies,” in IEEE
International Conference on ASIC (ASICON), 2023, pp. 1–4.

[21] R. Fu, M. Wang, Y. Kan, O. Chen, N. Yoshikawa, B. Yu, and T.-Y.
Ho, “Buffer and splitter insertion for adiabatic quantum-flux-parametron
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), pp. 1–14, 2024.

[22] R. Fu, R. Wille, and T.-Y. Ho, “RCGP: An automatic synthesis frame-
work for reversible quantum-flux-parametron logic circuits based on effi-
cient cartesian genetic programming,” in ACM/IEEE Design Automation
Conference (DAC), 2024.

[23] R. Fu, O. Chen, N. Yoshikawa, and T.-Y. Ho, “Exact logic synthesis for
reversible quantum-flux-parametron logic,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2023, pp. 1–9.

[24] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in International Conference on Computer-Aided Veri-
fication (CAV). Springer Berlin Heidelberg, 2010, pp. 24–40.

[25] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, S.-Y. Lee, A. Tempia Calvino, and G. Marakkalage,
Dewmini Sudara De Micheli, “The EPFL logic synthesis libraries,” 2022,
arXiv:1805.05121v3.

[26] S. Bouhenni, S. Yahiaoui, N. Nouali-Taboudjemat, and H. Kheddouci,
“A survey on distributed graph pattern matching in massive graphs,”
ACM Computing Surveys, vol. 54, no. 2, 2021.

[27] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,” Communications of the ACM, vol. 5, no. 7, pp. 394–
397, 1962.

[28] J. Marques Silva and K. Sakallah, “GRASP-A new search algorithm
for satisfiability,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 1996, pp. 220–227.

[29] M. Liu and P. Li, “SATMargin: Practical maximal frequent subgraph
mining via margin space sampling,” in The Web Conference (WWW),
2022, pp. 1495–1505.

[30] W. V. Quine, “A way to simplify truth functions,” The American
Mathematical Monthly, vol. 62, no. 9, pp. 627–631, 1955.

[31] E. J. McCluskey Jr., “Minimization of boolean functions*,” The Bell
System Technical Journal, vol. 35, no. 6, pp. 1417–1444, 1956.

[32] M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT solvers to
cryptographic problems,” in The International Conferences on Theory
and Applications of Satisfiability Testing (SAT), O. Kullmann, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 244–257.

[33] V. Vashishtha, M. Vangala, and L. T. Clark, “ASAP7 predictive design kit
development and cell design technology co-optimization: Invited paper,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2017, pp. 992–998.

12

[34] Z. Chu, Z. Li, Y. Xia, L. Wang, and W. Liu, “BCD adder designs based
on three-input XOR and majority gates,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 68, no. 6, pp. 1942–1946, 2021.

Rongliang Fu received his BS degree in software
engineering from the Northwestern Polytechnical
University, Xi’an, China, in 2018 and his MS de-
gree in computer science and technology from the
University of Chinese Academy of Sciences, Beijing,
China, in 2021. He is currently studying for his Ph.D
degree in the Department of Computer Science and
Engineering, The Chinese University of Hong Kong.
His research interests include electronic design au-
tomation and computer architecture.

Zhao Wang (M’24) received the M.S. and Ph.D.
degrees from Southeast University in 2002 and 2010,
respectively. He is currently an Associate Profes-
sor at Southeast University. His primary research
interests include EDA, VLSI DSP, and embedded
systems.

Bei Yu (M’15-SM’22) received the Ph.D. degree
from The University of Texas at Austin in 2014. He
is currently an Associate Professor in the Department
of Computer Science and Engineering, The Chinese
University of Hong Kong. He has served as TPC
Chair of ACM/IEEE Workshop on Machine Learn-
ing for CAD, and in many journal editorial boards
and conference committees. He received eleven Best
Paper Awards from ICCAD 2024 & 2021 & 2013,
IEEE TSM 2022, DATE 2022, ASPDAC 2021 &
2012, ICTAI 2019, Integration, the VLSI Journal

in 2018, ISPD 2017, SPIE Advanced Lithography Conference 2016, six
ICCAD/ISPD contest awards, and many other awards, including DAC Under-
40 Innovator Award (2024), IEEE CEDA Ernest S. Kuh Early Career Award
(2022), and Hong Kong RGC Research Fellowship Scheme (RFS) Award
(2024).

Tsung-Yi Ho (F’24) is a Professor in the Depart-
ment of Computer Science and Engineering, The
Chinese University of Hong Kong (CUHK). He
received his Ph.D. in Electrical Engineering from
National Taiwan University in 2005. His research
interests include several areas of computing and
emerging technologies, especially in the design au-
tomation of microfluidic biochips. He was a recipient
of the Best Paper Award at the IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems in 2015. Currently, he serves as the VP

Conferences of IEEE CEDA, and the Executive Committee of ASP-DAC and
ICCAD. He is a Distinguished Member of ACM and a Fellow of IEEE.

13

