
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Efficient Cartesian Genetic Programming-based
Automatic Synthesis Framework for Reversible

Quantum-Flux-Parametron Logic Circuits
Rongliang Fu, Robert Wille, Nobuyuki Yoshikawa Fellow, IEEE, and Tsung-Yi Ho Fellow, IEEE

Abstract—Reversible computing has garnered significant atten-
tion as a promising avenue for achieving energy-efficient comput-
ing systems, particularly within the realm of quantum computing.
The reversible quantum-flux-parametron (RQFP) is the first
practical reversible logic gate utilizing adiabatic superconducting
devices, with experimental evidence supporting both its logical
and physical reversibility. Each RQFP logic gate operates on
alternating current (AC) power and features three input ports
and three output ports. Notably, each output port is capable of
implementing a majority function while driving only a single
fan-out. Additionally, the three inputs to each gate must arrive
in the same clock phase. These inherent characteristics present
substantial challenges in the design of RQFP logic circuits.
To address these challenges, this paper proposes an automatic
synthesis framework for RQFP logic circuit design based on
efficient Cartesian genetic programming (CGP). The framework
aims to minimize both the number of RQFP logic gates and the
number of garbage outputs within the generated RQFP logic
circuit. It incorporates the specific characteristics of the RQFP
logic circuit by encoding them into the genotype of a CGP
individual. It also introduces several point mutation operations
to facilitate the generation of new individuals. Furthermore, the
framework integrates circuit simulation with formal verification
to assess the functional equivalence between the parent and
its offspring. Experimental results on RevLib and reversible
reciprocal circuit benchmarks demonstrate the effectiveness of
our framework.

Index Terms—Superconducting electronics, reversible
quantum-flux-parametron, reversible computing, logic synthesis,
Cartesian genetic programming

I. INTRODUCTION

THE impetus for developing reversible computing stems
from the inherent limitations of traditional irreversible

logic systems, especially regarding energy dissipation. Con-
ventional logic systems, such as complementary metal-oxide-

The research work described in this paper was conducted in the JC STEM
Lab of Intelligent Design Automation funded by The Hong Kong Jockey Club
Charities Trust. This work is supported in part by the Research Grants Council
of Hong Kong SAR (No. CUHK14207523); in part by the European Union’s
Horizon 2020 research and innovation programme (DA QC, No. 101001318);
and in part of the Munich Quantum Valley, which is supported by the Bavarian
state government with funds from the Hightech Agenda Bayern Plus.

Rongliang Fu and Tsung-Yi Ho are with the Department of Computer
Science and Engineering, The Chinese University of Hong Kong, Hong Kong
999077, China. E-mail: {rlfu, tyho}@cse.cuhk.edu.hk.

Robert Wille is with the Chair for Design Automation, Technical Uni-
versity of Munich, 80333 Munich, Germany, and also with Software
Competence Center Hagenberg GmbH, 4232 Hagenberg, Austria. E-mail:
robert.wille@tum.de.

Nobuyuki Yoshikawa is with the Department of Electrical and Computer
Engineering, Yokohama National University, Yokohama 240-8501, Japan. E-
mail: nyoshi@ynu.ac.jp.

AQFP majorityAQFP splitter

Josephson
junction

Inductors

Inverters

Fig. 1. Functional and structural schematic of the RQFP logic gate, where
symbols employed include · for logical conjunction (AND), + for logical
disjunction (OR), and − for logical negation (NOT).

semiconductor (CMOS) logic, are prone to irreversible oper-
ations that result in information loss and subsequent energy
dissipation in the form of heat. According to Landauer’s prin-
ciple established in 1961 [1], the loss of each bit of information
incurs an energy cost quantified as kBT ln 2 J, where kB is
the Boltzmann constant and T denotes the temperature of the
system. This heat dissipation becomes increasingly significant
with rising processor frequencies. Consequently, reversible
computing has emerged as a promising paradigm for reducing
energy dissipation in logic operations, drawing considerable
academic interest. Theoretically, it offers the potential for near-
zero energy consumption by preserving information [2]. This
paradigm is particularly relevant to quantum computing, where
operations are inherently reversible [3].

Nonetheless, the practical realization of reversible comput-
ing poses substantial challenges. It requires both logical and
physical reversibility, along with the development of ultra-low
power logic devices [4]. In this context, Takeuchi et al. in-
troduced the reversible quantum-flux-parametron (RQFP) [5],
marking the first practical reversible logic gate utilizing
adiabatic superconducting devices. The logical and physical

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

reversibility of RQFP has been validated experimentally [5],
[6]. Furthermore, Yamae et al. designed and fabricated an
RQFP logic full adder [7], further illustrating the feasibility of
RQFP logic circuits. Consequently, RQFP logic has attracted
increasing research interest [8]–[11].

Despite these advances, the design of RQFP circuits remains
complex due to the lack of automated design tools [8].
RQFP logic gates are implemented using adiabatic quantum-
flux-parametron (AQFP) technology [12], an energy-efficient
superconductor logic element based on the quantum flux
parametron [13]. Fig. 1 illustrates a standard RQFP logic
gate structure [6], [7], consisting of three AQFP splitter
gates and three AQFP majority gates. The RQFP logic
gate thus provides three functional outputs, R(a, b, c) ={
M(a, b, c),M(a, b, c),M(a, b, c)

}
= {x, y, z}, where a, b,

and c are inputs; x, y, and z are outputs; and M(·) denotes a
three-input majority function M(a, b, c) = a · b+ a · c+ b · c.
In contrast, conventional reversible logic circuits primarily
utilize the basic Toffoli [14] and Fredkin [15] gates, along with
their extensions known as multiple-control Toffoli (MCT) and
multiple-control Fredkin (MCF) gates. Fig. 2(a) and 2(b) show
the schematics of MCT and MCF gates, respectively. They
operate as multi-controlled NOT and multi-controlled SWAP
gates, respectively, with output functions primarily focused on
the last one or two output ports to realize the XOR-sum-of-
products. Moreover, RQFP logic should adhere to constraints
inherent to AQFP logic, such as the fan-out limitation and the
clock-synchronized data propagation requirement. Therefore,
due to these functional and structural distinctions, traditional
logic synthesis methods are unsuitable for RQFP logic.

The existing exact synthesis method [10] formulates the
generation of RQFP logic circuits as a Boolean satisfiability
(SAT) problem. While this approach is capable of exactly
synthesizing RQFP logic circuits based on a specified number
of RQFP logic gates and garbage outputs, it suffers from
significant scalability limitations, rendering it applicable only
to very small circuits. In contrast, our previous work, RCGP
[11], directly employs the Cartesian genetic programming
(CGP) approach to facilitate the generation of large RQFP
logic circuits. Both methods aim to optimize the number of
RQFP logic gates and the number of garbage outputs, as these
two metrics severely affect the energy dissipation of RQFP
logic circuits. However, they do not explicitly constrain the
inverter configuration of RQFP logic gates to ensure logical
reversibility. Therefore, the exploration of reversible logic
synthesis methods for legal RQFP logic circuits remains vital.

In response to these challenges, this paper introduces an
efficient Cartesian genetic programming framework for the
automatic synthesis of RQFP logic circuits, aiming to optimize
both the number of RQFP logic gates and the number of
garbage outputs. In summary, this paper makes the following
contributions:

• This paper thoroughly analyzes the characteristics of
RQFP logic and introduces the RQFP splitter and buffer
to meet its design requirements.

• This paper presents a novel automatic synthesis frame-
work based on efficient Cartesian genetic programming
to effectively and efficiently generate RQFP logic circuits.

(a) (b)
Fig. 2. Functional schematics of (a) MCT gate and (b) MCF gate.

• This paper presents a CGP encoding for RQFP logic
circuit representation, three corresponding point mutation
operations for individual generation, and a new shrinking
operation of the genotype for search space reduction.

• This paper limits the inverter configuration of RQFP logic
gates to ensure logical reversibility of generated RQFP
logic circuits.

Moreover, experimental results on RevLib circuits [16] and
reversible reciprocal circuits [17] demonstrate the effectiveness
and efficiency of our proposed framework.

• In terms of performance, our proposed framework yields
comparable effectiveness to the exact logic synthesis
method [10] on small RevLib circuits [16]. Compared
with two other baselines, including the heuristic method
in Section V and the RCGP [11], our framework achieves
an average reduction of 58.30% and 6.11% in the number
of RQFP logic gates and 70.56% and 18.21% in the
number of garbage outputs, respectively.

• In terms of scalability, the experimentation extends to
larger-scale circuits sourced from RevLib circuits [16]
and reversible reciprocal circuits [17]. Notably, the exact
logic synthesis [10] fails to provide feasible solutions for
these large circuits. Compared with two other baselines,
our proposed framework achieves an average reduction of
47.28% and 18.30% in the number of RQFP logic gates
and 63.72% and 15.12% in the number of garbage out-
puts, respectively. Meanwhile, our framework is efficient,
showcasing an average runtime reduction of 35.84% over
the RCGP [11].

The rest of this paper is organized as follows. Section
II provides an overview of several preliminaries and delves
into the characteristics of RQFP logic circuits. Section III
introduces the problem formulation. Section IV describes
our proposed automatic synthesis framework for RQFP logic
circuits. Section V demonstrates the effectiveness and effi-
ciency of our framework. Section VI summarizes this paper
and discusses potential avenues for further optimizing RQFP
circuit design.

II. PRELIMINARIES

A. Reversible Computing

Reversible computing is an emerging paradigm that seeks to
overcome the energy inefficiencies inherent in traditional com-
puting systems. Conventional computing relies on irreversible
operations, which result in information loss and energy dis-
sipation, typically manifesting as heat. This inefficiency is
primarily due to the loss of information during processes like

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

bit erasure. According to Landauer’s principle [1], each erased
bit incurs a specific energy cost, which becomes increasingly
significant as computational demands grow.

Reversible computing offers a solution by allowing compu-
tational processes to be reversed. This means that the outputs
of a computation can be used to uniquely determine its inputs,
i.e., logical reversibility, effectively preserving information
throughout the process [2]. This approach has the potential
to significantly reduce energy consumption and enable theo-
retically energy-free computation. The concept dates back to
the 1970s, with pioneering work by researchers like Charles H.
Bennett and Richard Feynman, who proposed that logical op-
erations could be designed to be reversible [2], [14], [15], [18].
This paradigm has significant implications for the develop-
ment of low-power computing systems, quantum computing,
and nanotechnology, where energy efficiency is paramount.
However, the physical implementation of reversible com-
puting is challenging. It requires both logical and physical
reversibility, as well as ultra-low power logic devices. Despite
these challenges, by integrating reversible logic with emerging
technologies, reversible computing holds promise for creating
energy-efficient, high-performance computing solutions that
align with the growing need for sustainability in technological
advancement [3].

B. Adiabatic Quantum-Flux-Parametron Logic

AQFP logic is a superconducting digital technology
renowned for its ultra-low power consumption [12], [19].
It combines the principles of adiabatic switching with the
quantum-flux-parametron mechanism [13] to achieve energy-
efficient computations. This makes AQFP a promising alter-
native to conventional CMOS technology, especially in ap-
plications demanding low power consumption. Consequently,
extensive research has focused on AQFP logic circuit design.
In terms of logical design, people have proposed majority-
inverter graph (MIG)–based logic optimization methods to
minimize circuit size and depth [20]–[22]. Meanwhile, the
unique characteristics of AQFP logic, specifically fan-out lim-
itation and clock-synchronized data propagation requirement,
have also been effectively addressed [23]–[26]. In terms of
physical design, multi-phase clocking-based placement meth-
ods have been proposed for AQFP logic circuits to adhere to
spacing and timing constraints, particularly in relation to the
4-phase clocking scheme [27], [28] and the delay-line clocking
scheme [29].

C. Reversible Quantum-Flux-Parametron Logic

The RQFP logic gate, a member of the superconducting
logic family, exhibits both logical and physical reversibility
[5], [6]. As illustrated in Fig. 1, it consists of three one-to-
three AQFP splitter gates (S1, S2, S3) and three three-input
AQFP majority gates (M1,M2,M3). Similar to AQFP logic,
excitation currents Ix1 and Ix2 are required to drive these
splitter and majority gates, respectively, along with a direct
current Id to provide an offset flux. Upon the arrival of the
excitation currents, the Josephson junction (JJ) within the
AQFP logic gate switches, enabling the inductor to produce

RQFP

splitter insertion

(a)

AQFP
buffer

AQFP
buffer

(b)

AQFP
buffer

AQFP
buffer

(c)
Fig. 3. Schematics of (a) splitter insertion for RQFP logic, (b) RQFP buffer,
and (c) RQFP inverter. The gate R1 has four fan-outs with three distinct
types of functional outputs. After RQFP splitter insertion, the new gate R2

can afford the same output function with two fan-outs (orange arrows).

the output current. Furthermore, since the RQFP logic gate is
constructed using AQFP logic gates, it inherits the fundamen-
tal characteristics of AQFP logic, particularly the limitation
on fan-out and the requirement for clock-synchronized data
propagation.

1) RQFP Functionality: The outputs of the RQFP logic
gate are derived from its three three-input AQFP majority com-
ponents, thereby naturally implementing the majority function.
In a standard RQFP logic gate, three inverters are positioned in
fixed locations, one in front of each AQFP majority gate, i.e.,
R(a, b, c) =

{
M(a, b, c),M(a, b, c),M(a, b, c)

}
. This config-

uration establishes a one-to-one mapping between the three
inputs and three outputs of the RQFP gate, rendering it
logically reversible [5]. Notably, the flexibility to integrate
inverters into any input of each AQFP majority gate allows
for an extension of the functionality of RQFP logic gates,
enabling the configuration of each RQFP logic gate’s function
through the inverter settings. Consequently, each output of
an RQFP logic gate can have eight function choices, includ-
ing M(a, b, c), M(a, b, c), M(a, b, c), M(a, b, c), M(a, b, c),
M(a, b, c), M(a, b, c), and M(a, b, c).

2) RQFP Splitter: In AQFP logic, each output of each
AQFP logic gate can only drive one successor, adhering to
the single fan-out limitation. While the AQFP splitter gate
can achieve multiple fan-outs, it cannot be directly employed
in RQFP logic due to its irreversibility. To maintain the
reversibility, the RQFP splitter can be constructed by the
combination of an RQFP logic gate and constant inputs. For
example, the one-to-two RQFP splitter can be realized by
R(1, x, 1) =

{
M(1, x, 1),M(1, x, 1),M(1, x, 1)

}
= {x, 1, x}.

Fig. 3(a) illustrates an example of splitter insertion in RQFP
logic, where the second output port of gate R1 has two fan-
outs. A one-to-two RQFP splitter R2 with two constant inputs
can be inserted after gate R1 to satisfy the fan-out limitation.

3) RQFP Buffer: Furthermore, all inputs to each gate in
AQFP logic must arrive in the same clock phases, fulfilling
the requirement for clock-synchronized data propagation. This
requirement can be addressed by the insertion of AQFP
buffers. Similarly, the insertion of RQFP buffers into RQFP
logic circuits becomes essential, ensuring that all data input

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

paths to the logic gate from primary inputs pass through the
same number of logic gates (namely logic level). One method
involves utilizing a combination of an RQFP logic gate and
constant inputs to construct the RQFP buffer. For instance,
R(x, 1, 1) =

{
M(a, 1, 1),M(a, 1, 1),M(a, 1, 1)

}
= {1, a, a}

can achieve the RQFP buffer function while producing two
additional outputs, which may result in significant cost. Given
the requirements for logical and physical reversibility in re-
versible computing, two cascaded AQFP buffers can be uti-
lized to construct an RQFP buffer [10], as shown in Fig. 3(b).
Furthermore, the RQFP inverter can also be constructed by
placing an inverter in front of the latter RQFP buffer, as shown
in Fig. 3(c). It can connect the primary input (PI) and primary
output (PO), which have complementary logic values.

4) RQFP Logic Circuits: RQFP logic gates have been ex-
perimentally validated as effective components for the design
of reversible logic circuits. To achieve reversible logic circuit
design by RQFP logic gates, we need to consider the following
three requirements:
(a) the realization of given functions by RQFP logic gates;
(b) single fan-out limitation;
(c) clock-synchronized data propagation.

The first ensures the functional legalization of generated cir-
cuits. The last two ensure the legalization of generated circuits
on the structure inherited from RQFP logic. That means that
all inputs to each logic gate have the same logic level, and
all output ports of each logic gate have at most one fan-out.
Notably, the last two depend on the result of the first and can
be satisfied by inserting RQFP splitters and RQFP buffers.

Generally, a reversible logic circuit can implement a re-
versible Boolean function that represents a one-to-one map-
ping between vectors of primary inputs and primary outputs.
Additional constant inputs and outputs must be introduced
to convert an irreversible function into a reversible one.
These additional outputs are called garbage outputs. However,
excessive garbage outputs can lead to energy inefficiencies.
Therefore, the design of RQFP logic circuits must consider
both the number of RQFP logic gates and the number of
garbage outputs.

D. Cartesian Genetic Programming

Evolutionary algorithms have demonstrated significant effi-
cacy in addressing complex optimization problems. A promi-
nent example is Cartesian genetic programming (CGP), in-
troduced by Julian F. Miller and Peter Thomson in 2000
[30]. CGP is a specialized form of genetic programming that
employs a directed acyclic graph (DAG) structure, visualized
as a two-dimensional array of computational nodes in r rows
and c columns. Each node in the graph represents a specific
function with ni inputs and no outputs and is encoded by ni+1
integer genes. For the jth node, the function gene Fj records
the index of its corresponding computational function in a
predefined function look-up table Γ, while the remaining ni

connection genes Cj,0 · · ·Cj,k · · ·Cj,ni−1 specify the sources
of its input data, where Cj,k indicates that the kth input comes
from the node with index Cj,k. When the problem requires
npo program outputs, the genotype will increase npo output

0 1 0 3 2 1 3 4 2 4

Logic
function

Input
connections

(a) Genotype.

3 4
AND OR NOT

1 0

1

2

(b) Phenotype.

1

(c) Decoded circuit.
Fig. 4. Illustration of the decoding process of the CGP genotype to the
corresponding phenotype with parameters npi = 3, npo = 4, ni = 2, no =
1, c = 3, r = 1, l = 3, Γ = {0:AND, 1:OR, 2:NOT}. This CGP individual
presents a circuit with the function y = a+ b, where the identifiers 1, a, and
b refer to the three primary inputs with indices 0, 1, and 2, and the identifier
y stands for the primary output of the circuit.

genes O0 · · ·Ok · · ·Onpo−1, where Ok records the address of
the node from which the kth output data comes. Hence, the
genotype in CGP is represented as a string of fixed-length
integers, as follows:

C0,0 · · ·C0,ni−1F0C1,0 · · ·C1,ni−1F1 · · · · · ·
Cr×c−1,0 · · ·Cr×c−1,ni−1Fr×c−1O0O1 · · ·Onpo−1,

where the genotype length is L = r × c× (ni + 1) + npo. To
control the connectivity of the graph encoded, the parameter
l, called levels-back, restricts the columns from which a node
can receive its inputs. For instance, with l = 1, a node can
only get its inputs from the immediately adjacent left column
or from primary inputs. When one wishes to allow nodes to
connect to any nodes to their left, then l = c.

The genotype is subsequently translated into the correspond-
ing phenotype, thereby yielding a computational structure or
program. This modular representation facilitates the efficient
exploration of a vast search space, enabling CGP to effectively
address problems with high dimensionality and complexity,
including mathematical equations, software programs, neural
networks, and digital circuits. Taking the digital circuit as
an example, Fig. 4 illustrates the process of decoding the
CGP genotype for the circuit to the corresponding phenotype.
To achieve efficient search, (1 + λ)–evolutionary strategy is
typically applied in CGP, as outlined in Algorithm 1. The key
point of this strategy is to mutate a single parent genotype to
generate λ offspring. First, the parent individual p is initialized
(line 1). Then, the population P of the size λ is generated by
mutating the parent p (line 3), and the offspring individual c
with the best fitness is selected (line 4). If the offspring c’s
fitness is equal to or better than the parent p, the offspring

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Algorithm 1: Standard (1 + λ)-CGP search algorithm.
Input: CGP parameters.
Output: The best individual p.

1 Initialize the parent p.
2 do
3 P ← {p′1 = mutate(p), ..., p′λ = mutate(p)}.
4 c← select the individual with the best fitness in P .
5 if fitness(c) ≥ fitness(p) then
6 p← c.
7 while termination criterion not met;
8 return p.

c is chosen as the parent. Finally, the above steps (lines 3-
6) are repeated until the termination criterion is met, such as
up to the maximum population size N . In this way, the best
individual can be obtained.

CGP has emerged as a highly effective evolutionary tech-
nique within the realm of evolutionary algorithm-based logic
synthesis and optimization [31], [32]. Since its introduction,
it has produced numerous competitive outcomes in general
circuit design. Notably, the scalability of CGP has improved
significantly with the advent of SAT-based CGP in 2011
[33], which addresses the computationally intensive nature of
exhaustive circuit simulations needed to evaluate the Hamming
distance between candidate solutions and specified targets. To
expedite the evolution of complex circuits, a binary decision
diagram (BDD)–based fitness function has been employed
[34]. Furthermore, the integration of circuit simulation with
formal verification [35] facilitates the optimization of combi-
national circuits comprising hundreds of inputs and thousands
of gates. In addition, more complex real-world scenarios
involving millions of gates can be optimized using windowing
techniques [36]. Consequently, this paper utilizes CGP as a
foundational framework for developing an efficient automatic
synthesis algorithm for RQFP logic, aimed at addressing the
challenges inherent in generating RQFP logic circuits.

III. PROBLEM FORMULATION

The primary focus of this paper is how to generate a legal
RQFP logic circuit for a given function. Our objective is
to minimize both the number of RQFP logic gates and the
number of garbage outputs while meeting the requirements of
RQFP circuit design. Therefore, the problem for RQFP circuit
generation can be formulated as follows:

• Input:
1) A given function with npi primary inputs and npo

primary outputs.
• Output:

A legal RQFP logic circuit G(V,E) with nr RQFP logic
gates and ng garbage outputs, where V is the gate set,
and E is the edge set.

• Constraints:
1) Function equivalence: The generated circuit G can

achieve the given function.

R
T

L
 d

es
ig

n
ph

as
e

L
og

ic
 sy

nt
he

si
s

ph
as

e

Verilog

Truth
table

R
ev

er
si

bl
e

sy
nt

he
si

s p
ha

se

Initialization

CGP-based Optimization

Exact Logic
Synthesis

RQFP Splitter Insertion

RQFP Buffer Insertion

RQFP

RQFP

RQFP

RQFP logic circuit

RQFP

AIG

ABC

mockturtle
AIG / MIG

Fig. 5. The flow of RQFP logic circuit generation, where lines represent
interfaces between files and tools or methods.

2) Fan-out limitation:

∀e ∈ E, |et| = 1, (1)

which ensures that each edge in circuit G has only two
pins, including one source and one sink.

3) Clock-synchronized data propagation:

∀u ∈ FI(v), v ∈ V , L(v) = L(u) + 1, (2)

which ensures that all inputs to each gate within circuit
G have the same logic level.

Hence, Equations (1) and (2) guarantee the final circuit
is legal after RQFP splitter and buffer insertion.

• Goal:
min
G
⟨nr, ng⟩, (3)

which means minimizing the number ng of garbage
outputs on the basis of minimizing the number nr of
RQFP logic gates for the generated circuit G.

IV. AUTOMATIC SYNTHESIS FRAMEWORK

RQFP logic is characterized by distinctive characteris-
tics that pose significant challenges in the design of RQFP
logic circuits. Specifically, an RQFP logic gate possesses
three output ports, each capable of independently executing
a majority function. In addition, RQFP logic circuits must
adhere to the single fan-out limitation and the requirement
for clock-synchronized data propagation, which necessitates
the insertion of RQFP splitters and buffers. These distinctive
features inherently contribute to the complexity involved in
the design of RQFP logic circuits. In light of these challenges,
this section proposes a comprehensive end-to-end framework
for the generation of RQFP logic circuits, as illustrated in
Fig. 5. In contrast to the existing exact synthesis method [10]
that generates the corresponding RQFP logic circuit directly
from a truth table in a single step, the proposed framework
decomposes the entire process into multiple phases. This

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

phased approach facilitates the gradual optimization of the
RQFP logic circuit, thereby enhancing its scalability. Initially,
conventional logic synthesis tools are utilized to process the
RTL input and optimize the intermediate circuit. The generated
circuit is then directly transformed into an RQFP logic netlist.
Subsequently, RQFP splitters are inserted to address the fan-
out limitation, yielding an initial RQFP logic network without
multiple fan-outs. To optimize this network, an RQFP-oriented
CGP method is then proposed, aiming to minimize both the
number of RQFP logic gates and the number of garbage
outputs. Finally, after the insertion of RQFP buffers, a legal
RQFP logic circuit can be achieved.

A. Initialization

To accommodate the RTL description inputs in various
standard formats, such as Verilog, AIGER, and BLIF, our
framework initially integrates several widely-used open-source
logic synthesis tools, specifically ABC [37] and mockturtle
[38], to process these inputs automatically. Both mockturtle
and ABC are adept at optimizing networks based on the AND-
inverter graph (AIG), while mockturtle additionally supports
optimization for networks based on the majority-inverter graph
(MIG). The choice of both these tools and their corresponding
optimization methods is configurable within the framework.

Following the application of these logic synthesis tools,
optimized networks based on either AIG or MIG are generated.
Given that the introduction of constant inputs can facilitate
the realization of AND, OR, NOT, and majority functions
through RQFP logic gates, the AIG or MIG-based network can
be straightforwardly transformed into an RQFP logic netlist.
For instance, the introduction of a constant 1 enables the
realization of the AND function, specifically expressed as
R(a, b, 1) = {M(a, b, 1),M(a, b, 1),M(a, b, 1)} = {a+ b, a+
b, ab}, where the last output corresponds to the AND function.

Furthermore, not all inverter configurations for an RQFP
logic gate can make the gate logically reversible. To ensure
logical reversibility, there must be a one-to-one mapping
between vectors of primary inputs and primary outputs for
each RQFP logic gate. This requires that any two outputs in the
truth table of the RQFP logic gate with inverter configuration
ic must be different. Specifically, for any two distinct data
input vectors d1 and d2 with respective indices x1 ∈ [0, 8)
and x2 ∈ [0, 8), x1 ̸= x2 in the truth table, the following
equation must be true:

∨
i∈[0,3)

(
M

j∈[0,3)
(ic[i][j]⊕ d1[j])⊕ M

j∈[0,3)
(ic[i][j]⊕ d2[j])

)
,

(4)
where d1 = {x1 ∧ 1, (x1 ≫ 1) ∧ 1, (x1 ≫ 2) ∧ 1}, d2 =
{x2 ∧ 1, (x2 ≫ 1) ∧ 1, (x2 ≫ 2) ∧ 1}, and ic[i][j] represents
whether an inverter exists in front of the jth input port of the
ith majority within RQFP logic gate.

B. RQFP Splitter Insertion

After generating the initial RQFP logic netlist using RQFP
logic gates with logical reversibility, a lot of multiple fan-
outs may exist. To mitigate the complexity of RQFP logic

Fig. 6. Schematic of the chained RQFP splitter tree for a multi-fan-out signal
x, where the green (black) line represents the transmission of the constant
(signal x), and gates S1,S2, and S3 have the same inverter configuration,
i.e.R(1, 1, x) = {M(1, 1, x),M(1, 1, x),M(1, 1, x)} = {x, 1, x}.

optimization, RQFP splitters are inserted into the initial RQFP
logic netlist ahead of time to meet the fan-out limitation. In
this way, the initialization process of RQFP logic circuits is
completed.

Theorem 1. Given an RQFP logic gate, no matter what
inverter configuration it has, it cannot function as a one-to-
three RQFP splitter with logical reversibility.

Proof. Assume that there exists an RQFP logic gate g, which
functions as a one-to-three RQFP splitter for its data input
x. So, all three output ports of gate g output x. For sim-
plicity, let the other two inputs of gate g be constant 1, i.e.,
R(1, x, 1) = {x, x, x}. According to the definition of the
majority function, to make each majority gate within gate
g output x, its other two inputs must be complementary,
such as R(1, x, 1) = {M(1, x, 1),M(1, x, 1),M(1, x, 1)}. In
this inverter configuration, we cannot distinguish R(0, 0, 1)
from R(0, 1, 1), i.e., R(0, 0, 1) = {1, 1, 1} = R(0, 1, 1),
which contradicts with the requirement of logical reversibility.
Therefore, the one-to-three RQFP splitter constructed by an
RQFP logic gate does not exist.

However, to ensure logical reversibility, the one-to-three
RQFP splitter cannot be constructed using the current RQFP
logic gate, as illustrated in Theorem 1. Hence, we can only
use one-to-two RQFP splitters to implement multiple fan-
outs, where each splitter introduces one additional garbage
output. To reduce the number of garbage outputs caused by
the insertion of RQFP splitters, a chained RQFP splitter tree
structure is adopted, as illustrated in Fig. 6. In this structure,
the constant output of the parent node serves as a constant
input of its successor, which makes each chained RQFP splitter
tree introduce at most one garbage output in total.

C. CGP-based Optimization

Definition 1 (Functional Symmetry). If two RQFP logic
gates produce the same functional outputs but differ in their
corresponding output port indices, then the two RQFP logic
gates have functional symmetry. For instance, two gates
R1(a, b, c) = {x, y, z} and R2(a, b, c) = {x, z, y} have
functional symmetry.

1) CGP Encoding.: To optimize an RQFP logic circuit,
the process begins with the introduction of CGP encoding
to represent an RQFP logic circuit. Typically, CGP encodes
a candidate solution using an integer array that represents
programmable nodes organized in c columns and r rows. For
circuit optimization purposes, a linear form of CGP, where

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

r = 1, is usually preferred. Each programmable node in the
CGP representation possesses a fixed number of inputs, ni, and
outputs, no, and can implement one of nf = |Γ| predefined
primitive functions. Hence, in the context of RQFP circuits,
each node corresponds to an RQFP logic gate, with both ni

and no set to 3. Inputs to each node can be connected to the
output ports of any node within the preceding l columns or to
one of the npi primary inputs. Notably, due to the complexity
of evaluation, cycles are not allowed in the standard version
of CGP, thereby preventing feedback loops from a node to
its successors. In addition, since the function of each RQFP
logic gate depends on its inverter configuration, there are a
total of 29 = 512 possible functions, of which 192 are logi-
cally reversible. Furthermore, due to the functional symmetry
existing in RQFP logic gates, illustrated in Definition 1, the
permutation of connection order can yield equivalent results,
thereby resulting in a final selection of 32 unique functions,
i.e., nf = 32. Therefore, a candidate circuit is encoded as
a CGP genotype consisting of L = c × r × (ni + 1) + npo

integers, where 1 represents each node requires one integer to
record its function index and the last npo integers record the
input indices corresponding to the primary outputs.

Since the positions of input ports within each RQFP logic
gate are fixed and directly affect its functional output, the CGP
encoding must adapt to suit RQFP logic. For instance, Fig. 7(a)
illustrates the CGP encoding of a 2-to-4 decoder, where c = 4
and r = 1. The decoder has npi = 2 primary inputs, x0 and
x1, and npo = 4 primary outputs, y0, y1, y2 and y3. Due
to the requirement of RQFP splitters for constant inputs, a
constant 1 is introduced and indexed at 0, with primary inputs
indexed from 1 to npi. Specifically, the long green integer
string at the bottom of Fig. 7(a) represents the CGP encoding
corresponding to an initial RQFP logic circuit for the 2-to-4
decoder above it. The integer substring within each pair of
parentheses in the CGP encoding signifies an RQFP node.
For example, “(5, 4, 0, 101-100-000)” represents the CGP
encoding of the second RQFP logic gate, where “5, 4, 0”
specifies the interconnection of its input ports with the output
ports indexed 5, 4, 0 (the constant input), respectively, and
“101-100-000” specifies the inverter configuration before its
three AQFP majority components. The inverter configuration
is represented by a 9-bit integer, where each bit indicates the
presence of an inverter at the corresponding input port. For
instance, “100” indicates an inverter exists before the first input
port of the second AQFP majority within the second RQFP
logic gate. Additionally, the last item “(6, 10, 13, 14)” details
the indices of output ports connected to primary outputs, where
“14” represents that the primary output y3 is connected to the
third output port of the third RQFP logic gate.

2) CGP Evaluation.: Once a candidate circuit has been
encoded, its evaluation is imperative. In our framework, the
evaluation of the fitness value of a CGP individual consists of
two distinct phases. The first phase involves function evalua-
tion, which determines the number of correct primary output
bits produced in response to all possible assignments of the
primary inputs. The second phase is performance evaluation,
which assesses the number of RQFP logic gates and garbage
outputs. The evaluation process is detailed as follows:

 (1)

 (2)

1 (0)

(0, 2, 1, 000-100-110)(5, 4, 0, 101-100-000)(0, 0, 7, 001-101-100)(9, 8, 3, 100-110-111)(6, 10, 13, 14)

9

8

3

12

13

14

0

2

1

3

4

5

5

4

0

6

7

8

0

0

7

9

10

11

(a)

 (1)

 (2)

1 (0)

(0, 2, 1, 000-100-110)(5, 4, 0, 101-011-000)(0, 0, 0, 001-101-100)(8, 0, 3, 100-110-111)(6, 7, 13, 14)

8

0

3

12

13

14

0

0

7

9

10

11

5

4

0

6

7

8

0

2

1

3

4

5

(b)

 (1)

 (2)

1 (0)

(0, 2, 1, 000-100-110)(5, 4, 0, 101-011-000)(8, 0, 3, 100-110-111)(6, 7, 10, 11)

0

2

1

3

4

5

5

4

0

6

7

8

8

0

3

9

10

11

(c)

 (1)

 (2)

1 (0)

AQFP
buffer

AQFP
buffer

AQFP
buffer

AQFP
buffer

1 (0)

AQFP
buffer

AQFP
buffer1 (0)

Garbage

RQFP buffer

8

0

3

9

10

11

5

4

0

6

7

8

0

2

1

3

4

5

(d)
Fig. 7. Schematics of CGP individuals encoding a 2-to-4 decoder circuit
with npi = 2 primary inputs and npo = 4 primary outputs. (a) shows a
CGP individual with nr = 4 RQFP logic gates and ng = 2 garbage outputs.
(b) is the individual with nr = 4 RQFP logic gates (including one useless
gate) and ng = 4 garbage outputs after the mutation of (a). (c) is the final
individual with nr = 3 RQFP logic gates and ng = 1 garbage outputs after
the removal of useless gates in (b). (d) displays the final RQFP logic circuit
after RQFP buffer insertion for (c).

(a) The performance evaluation is conducted only when the
circuit function is satisfied, specifically when the number
of correct primary output bits equals npo × 2npi . This
condition ensures the functional validity of the solution.

(b) Subsequently, the performance evaluation prioritizes opti-
mizing the number of RQFP logic gates, with a secondary
objective of minimizing the number of garbage outputs.

Additionally, while maintaining the optimal number of
RQFP logic gates and garbage outputs, our framework also
considers the reduction of RQFP buffers required for the clock-
synchronized propagation of data.

3) CGP Mutation.: Following the construction of the CGP
individual, CGP mutation must occur to produce its offspring.
Point mutation is typically preferred due to its high efficiency.
This mutation process randomly alters up to m genes (integers)
of a parent genotype to create an offspring, where m is
determined by the mutation rate µ, µ ∈ [0, 1]. To ensure that

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

each gene has an opportunity for random modification during
each mutation, our framework sets the maximum of m to µ∗L,
where L is the length of the genotype.

In the context of CGP encoding, a single gene mutated
from g to g′ causes either a node reconnection or an inverter
configuration change. Given the fan-out limitation of RQFP
logic, three scenarios may arise concerning node reconnection.
Notably, the initialization process has ensured the single fan-
out limitation of the parent genotype.
(a) When the output port corresponding to the mutated value

g′ has been connected to another node v, and the node
with output port index g is on the left of node v, the values
of these two genes need to be swapped. For instance, in
Fig. 7(a), assume that g = 9 in the last second item
“(9, 8, 3, 100-110-111)” mutates to g′ = 8, and then
the output port corresponding to ‘8’ is already connected
to the second input port of the last node. Therefore, the
swap operation is executed, resulting in “(8, 9, 3, 100-
110-111)”.

(b) When the output port corresponding to the mutated value
g′ is the constant input 1 or has no fan-out, g′ is directly
assigned to this gene g. For example, after mutating to
“(8, 9, 3, 100-110-111)”, assume that g = 9 further
mutates to g′ = 0 (the constant input 1), the genotype
of the last node becomes “(8, 0, 3, 100-110-111)”. This
indicates that the second input port of the last node is now
connected to the constant input 1, as shown in Fig. 7(b).

(c) When the output port corresponding to the mutated value
g′ has been connected to another node v, and the node
with output port index g is not on the left of node v,
g′ is directly assigned to this gene g, and the gene of
the corresponding input port of node v is updated to ‘0’,
meaning this input port is connected to the constant input
1. As shown in Fig. 7(a), assume that g = 10 in the last
item “(6, 10, 13, 14)” mutates to g′ = 7, and then the
output port corresponding to ‘7’ is already connected to
the third input port of the last second node v while the
node with output port index g is not on the left of node
v. Therefore, let g = g′, and the third input port of the
last second node is connected to the constant input 1, as
shown in Fig. 7(b).

Moreover, for the change of an inverter configuration f , the
mutation will produce an integer β ∈ [0, nf) to update f to the
function with index β in the function look-up table. As shown
in Fig. 7(a), the initial inverter configuration of the second
node is “101-100-000” with index 352 and then is updated
to “101-011-000” with index 344 through one mutation, as
shown in Fig. 7(b). In this way, the output function of the
second majority within the second node is updated.

4) CGP Contraction.: Subsequent to CGP mutation, it is
possible for certain useless nodes to persist in the phenotype.
The removal of these useless nodes does not alter the func-
tionality associated with the phenotype. These nodes can be
classified into two primary categories:
(a) Nodes that exhibit no fan-outs;
(b) Nodes for which all three output ports serve as constants.

For nodes belonging to the second category, their correspond-

Algorithm 2: The flow of CGP-based optimization.
Input: Initial individual p, total number N of

generations, mutation rate µ, number λ of
offspring.

Output: Optimized individual.
1 Calculate the functional fitness f of c.
2 fn ← f, pn ← p, nr ←∞, ng ←∞, nb ←∞.
3 if f = npo × 2npi then
4 Remove useless nodes to shrink pn.
5 Calculate the number (nr, ng, nb) of RQFP logic

gates, garbage outputs, and RQFP buffers in pn.

6 for i ∈ [1, N] do
7 p← pn.
8 for j ∈ [1, λ] do
9 Perform the mutation on p to generate an

offspring p′.
10 Calculate the functional fitness f ′ of p′.
11 if f ′ = 1 then
12 Remove useless nodes to shrink p′.
13 Calculate the number (n′

r, n
′
g, n

′
b) of gates,

garbage outputs, and buffers in p′.
14 if (nr, ng, nb) > (n′

r, n
′
g, n

′
b) then

15 (fn, pn, nr, ng, nb)←
(f ′, p′, n′

r, n
′
g, n

′
b).

16 else if f ′ > fn then
17 (fn, pn) = (f ′, p′).
18 return pn.

ing fan-outs are redirected to the constant input 1, effectively
converting them into first-category nodes without any fan-
out connections. Since first-category nodes have no fan-outs,
they are useless and can then be directly eliminated, thereby
reducing the genotype size without affecting the inputs of
subsequent nodes. For example, the third node with genes
“(0, 0, 7, 001-101-100)” in Fig. 7(b), has no fan-out and
is thus removed in Fig. 7(c). This elimination of useless
nodes highlights a significant advantage of CGP encoding: the
phenotype size can vary despite a fixed genotype size, as not
all nodes are necessary. Since our framework is designed to
minimize both the number of RQFP logic gates and garbage
outputs, these useless nodes can be discarded to compact the
genotype, thereby narrowing the search space. As a result, the
genotype length for the 2-to-4 decoder is reduced from 20 to
16, as illustrated in Fig. 7(c).

5) Flow of CGP-based Optimization.: Algorithm 2 shows
the comprehensive process of CGP-based optimization, which
employs a typical (1+λ) evolutionary strategy [30]. Initially,
it evaluates the initial individual p and regards p as the
current best parent pn (lines 2-5). Subsequently, it mutates
the best parent genotype to generate λ offspring within each
generation (lines 7-9). An offspring exhibiting a fitness equal
to or superior to that of the parent becomes the new parent for
the subsequent generation (lines 10-17). After N generations,
the optimal offspring is returned (line 18).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE I
EXPERIMENTAL RESULTS ON SMALL CIRCUITS FROM THE REVLIB BENCHMARK [16].

Testcase
Original Initialization Exact logic synthesis [10] RCGP [11] Ours

npi npo glb nr nb nj nd ng nr nb nj nd ng t (s) nr nb nj nd ng t (s) nr nb nj nd ng t (s)

1-bit full adder 3 2 1 8 7 220 5 10 3 3 84 3 3 14.51 3 3 84 3 3 103.39 3 3 84 3 3 113.04
4gt10 4 1 3 3 3 84 3 6 3 3 84 3 6 18.44 3 3 84 3 6 120.54 3 3 84 3 6 98.36
alu 5 1 4 14 17 404 6 17 4 6 120 4 5 96.16 4 6 120 4 5 173.56 4 6 120 4 5 134.47
c17 5 2 3 13 12 360 5 17 \ 7 6 192 4 8 301.46 7 20 248 6 6 221.84
decoder 2 4 2 4 0 10 5 260 4 10 3 5 92 3 1 10.22 3 4 88 3 2 124.47 3 3 84 3 1 128.46
decoder 3 8 3 8 0 29 33 828 8 31 7 25 268 7 1 93237.87 10 22 328 7 3 524.42 7 16 232 5 1 264.68
graycode4 4 4 0 18 13 484 5 22 \ 6 13 196 6 2 283.37 6 4 160 4 2 216.86
ham3 3 3 0 23 23 644 7 24 5 3 132 5 1 192.7 5 3 132 5 1 231.45 5 3 132 5 1 233.13
mux4 6 1 5 13 14 368 6 16 \ 8 13 244 6 9 354.79 6 3 156 4 7 200.55

* ‘\’ represents that the exact logic synthesis method can not find a feasible solution within 240,000 seconds.

D. RQFP Buffer Insertion

Following the CGP-based optimization, it is possible that
certain RQFP logic gates within the generated RQFP logic
circuit may not fulfill the requirement for clock-synchronized
data propagation. Consequently, the insertion of RQFP buffers
becomes essential to ensure uniform clock phases for all inputs
to each gate. Specifically, a requisite number of RQFP buffers
must be inserted into each edge, corresponding to the logic
level gap between its connected RQFP logic gates. Fig. 7(d)
illustrates the buffer insertion result for the RQFP logic circuit
shown in Fig. 7(c) generated for the 2-4 decoder.

V. EXPERIMENTAL RESULTS

The proposed framework for automatic RQFP logic circuit
generation was implemented using C++ and Python. For eval-
uation, we utilized circuits from the RevLib benchmark [16]
and the reversible reciprocal circuits [17], both of which are
specifically designed for reversible logic. For parameter con-
figuration, in the logic synthesis phase, our framework initially
employed the “resyn2” command from the ABC [37] to gen-
erate an optimized AIG network according to the truth table of
a given circuit, and then applied the “aqfp_resynthesis”
command from the mockturtle to convert the AIG network
into an AQFP-oriented MIG network. This command utilizes
a cutting-edge MIG-based logic optimization technique for
AQFP logic [21]. In the reversible synthesis phase, the number
N of generations was set to 50,000,000, and the mutation rate
µ was set to 1. The number c of columns was set to the number
of RQFP logic gates in the generated initial RQFP logic netlist,
while l was equal to c, and r was set to 1. The experiments
were conducted on a machine equipped with Intel(R) Xeon(R)
Gold 6226R CPU @ 2.90GHz and 256.0 GB memory, with
Ubuntu 22.04 as the operating system.

We compared our framework against the following three
baselines:

• The first baseline employed a transformation approach
and was a part of our framework. As shown in Fig. 5,
after the logic synthesis phase, it involved initialization,
followed by RQFP splitter and buffer insertion, to meet

clock-synchronization requirements and generate RQFP
logic circuits.

• The second baseline utilized an existing exact logic
synthesis method [10] with the Z3 solver [39]. It can
directly generate the RQFP logic circuit with a given
number of RQFP logic gates and garbage outputs from
the input truth table. In addition, it incorporates specific
constraints as illustrated in Equation (4) to ensure the
logical reversibility of generated RQFP logic circuits.

• The third baseline, RCGP [11], represents our framework
prior to optimizations.

In addition, to maintain consistency in all experimental results
regarding the clock-synchronized data propagation require-
ment for primary inputs and primary outputs, both primary
inputs and primary outputs require RQFP buffer insertion to
align them within the same clock stage, respectively.

TABLE I presents the experimental results for small circuits
from the RevLib benchmark. The “Original” part shows
the characteristics of input circuits, including the number
npi of primary inputs, the number npo of primary outputs,
and the lower bound glb = max(0, npi − npo) of garbage
outputs [10]. The “Initialization” part shows the results
from the first baseline, where nr denotes the number of used
RQFP logic gates, and nb denotes the number of RQFP
buffers inserted for the clock-synchronized data propagation
requirement. nj denotes the number of Josephson junctions
(JJs). Since JJs are critical components of AQFP circuits and
are used to create the fluxons used for computation, their count
serves as an estimate of the complexity and energy efficiency
of the AQFP circuit. Hence, the number of JJs can also be used
as a cost metric of RQFP logic circuits realized by AQFP logic.
Since both a buffer and a splitter have 2 JJs, and a 3-input
MAJ has 6 JJs in current AQFP logic circuits, the numbers
of JJs for each RQFP logic gate and RQFP buffer are 24 and
4, respectively. nd and ng represent the circuit depth and the
number of garbage outputs in generated RQFP logic circuits,
respectively. The “Exact logic synthesis” part shows
the results of the exact logic synthesis method [10] for RQFP
logic, including the runtime “t (s)” in seconds. The “RCGP”
and “Ours” parts show the results of RCGP [11] and our
proposed framework, respectively.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE II
EXPERIMENTAL RESULTS ON LARGE CIRCUITS FROM THE REVLIB BENCHMARK [16] AND THE REVERSIBLE RECIPROCAL CIRCUITS [17].

Testcase
Original Initialization RCGP [11] Ours

npi npo glb nr nb nj nd ng nr nb nj nd ng t (s) nr nb nj nd ng t (s)

4 49 7 4 4 0 48 103 1564 11 42 23 101 956 16 15 1024.35 24 45 756 9 13 707.07
graycode6 11 6 6 0 30 17 788 5 36 12 47 476 10 3 542.12 11 17 332 6 3 333.25
mod5adder 66 6 6 0 202 1242 9816 34 195 133 1763 10244 60 78 6114.78 101 288 3576 16 61 3267.38
hwb8 64 8 8 0 2129 40254 212112 128 2037 2118 46673 237524 116 1846 124268.44 2027 10602 91056 39 1818 96009.00
intdiv4 4 4 0 36 35 1044 9 37 18 54 648 11 10 721.05 14 18 408 6 9 685.99
intdiv5 5 5 0 71 140 2264 13 73 47 289 2284 25 26 1910.51 37 79 1204 10 22 1071.14
intdiv6 6 6 0 154 538 5848 21 152 83 788 5144 46 41 3928.42 73 184 2488 14 45 2354.22
intdiv7 7 7 0 293 1947 14820 37 282 197 3222 17616 79 115 9460.69 140 511 5404 18 86 4945.98
intdiv8 8 8 0 562 5701 36292 59 554 400 5928 33312 70 266 19339.97 293 1459 12868 25 187 10554.15
intdiv9 9 9 0 1054 13670 79976 78 1024 812 10896 63072 72 617 47004.98 507 1920 19848 24 380 22717.25
intdiv10 10 10 0 1815 32275 172660 115 1784 1402 18506 107672 71 1211 127957.25 1119 5972 50744 33 960 100127.44

Compared to the first baseline, our proposed framework
achieved a notable reduction in RQFP logic gates, JJs, and
garbage outputs, specifically by 58.30%, 56.33%, and 70.56%,
respectively. Although the exact logic synthesis can generate
the RQFP logic circuit with the optimal number of RQFP
logic gates and garbage outputs, our framework can yield
near-optimal results with less runtime. Moreover, the exact
logic synthesis failed to find feasible solutions for the circuits
“c17”, “graycode4”, and “mux4” within sufficiently given
240,000 seconds. Furthermore, compared with RCGP [11],
our framework also demonstrated reductions in RQFP logic
gates, JJs, and garbage outputs by 6.11%, 6.56%, and 18.21%,
respectively, while achieving an 18.95% reduction in runtime.
These results suggest that our proposed framework can ef-
fectively generate RQFP logic circuits with a near-optimal
number of RQFP logic gates and garbage outputs for small
benchmark circuits.

Table II presents the experimental results for large circuits
from the RevLib benchmark and reversible reciprocal circuits.
Notably, the exact logic synthesis method was unable to
provide feasible solutions for these circuits under a given
sufficient time, underscoring the importance of our frame-
work. Compared to the first baseline, our proposed framework
significantly reduced the number of RQFP logic gates and
the number of garbage outputs, specifically by 47.28% and
63.72%, respectively. When compared with the RCGP [11],
our proposed framework achieved reductions in these counts
by 18.30% and 15.12%, respectively. Furthermore, we also
compared the search processes of RCGP and our framework.
Taking intdiv10 as an example, Fig. 8 shows the number of
RQFP logic gates and garbage outputs for intdiv10 varies
across generations for RCGP [11] and our framework. It is
evident that our framework can find superior solutions more
rapidly. Therefore, these experimental results demonstrate that
our proposed framework can effectively and efficiently gener-
ate large RQFP logic circuits with fewer RQFP logic gates
and garbage outputs.

0 107 2× 107 3× 107 4× 107 5× 107
700

1000

1500

2000

Generations

ng of Ours ng of RCGP [11]
nr of Ours nr of RCGP [11]

Fig. 8. The number of RQFP logic gates, nr , and garbage outputs, ng ,
for intdiv10 generated by RCGP [11] and our framework varies with
generations.

VI. CONCLUSION

This paper presented a novel automatic synthesis framework
for RQFP logic based on Cartesian genetic programming.
Our framework leverages CGP encoding to effectively present
RQFP logic circuits and integrates circuit simulation with for-
mal verification to evaluate the functional equivalence between
the parent and offspring circuits. Through RQFP-oriented
mutations, our framework optimizes the number of gates
and garbage outputs, while ensuring the logical reversibility
of the generated RQFP logic circuits by imposing restric-
tions on inverter configurations. The experimental results on
both the RevLib benchmark and reversible reciprocal circuits
demonstrated the effectiveness of our framework in generating
RQFP logic gates. Moreover, our framework approaches the
optimality of the exact synthesis method but with greater effi-
ciency, particularly for large circuits where the exact synthesis
method becomes impractical due to computational constraints.
These findings underscore the potential of our framework as
a robust tool for optimizing RQFP logic circuits, addressing
the challenges of scalability and efficiency in logic synthesis.

Furthermore, due to the random perturbations involved in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

the mutation process, our framework still requires a significant
runtime. To enhance the efficiency and effectiveness of the
mutation process, future work will integrate advanced machine
learning (ML) techniques into the framework. This integration
aims to accelerate the exploration of feasible solutions by
leveraging the predictive and adaptive capabilities of ML
methods.

REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM Journal of Research and Development, vol. 5, no. 3, pp.
183–191, 1961.

[2] C. H. Bennett, “Logical reversibility of computation,” IBM Journal of
Research and Development, vol. 17, no. 6, pp. 525–532, 1973.

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
2011.

[4] A. Zulehner, M. P. Frank, and R. Wille, “Design automation for adiabatic
circuits,” in IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC), 2019, pp. 669–674.

[5] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Reversible logic gate
using adiabatic superconducting devices,” Scientific Reports, vol. 4, p.
6354, 2014.

[6] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Reversibility and energy
dissipation in adiabatic superconductor logic,” Scientific Reports, vol. 7,
p. 75, 2017.

[7] T. Yamae, N. Takeuchi, and N. Yoshikawa, “A reversible full adder
using adiabatic superconductor logic,” Superconductor Science and
Technology, vol. 32, no. 3, p. 035005, 2019.

[8] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Recent progress on
reversible quantum-flux-parametron for superconductor reversible com-
puting,” IEICE Transactions on Electronics, vol. E101.C, no. 5, pp. 352–
358, 2018.

[9] N. Takeuchi, T. Yamae, C. L. Ayala, H. Suzuki, and N. Yoshikawa, “Adi-
abatic quantum-flux-parametron: A tutorial review,” IEICE Transactions
on Electronics, vol. E105.C, no. 6, pp. 251–263, 2022.

[10] R. Fu, O. Chen, N. Yoshikawa, and T.-Y. Ho, “Exact logic synthesis for
reversible quantum-flux-parametron logic,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2023, pp. 1–9.

[11] R. Fu, R. Wille, and T.-Y. Ho, “RCGP: An automatic synthesis
framework for reversible quantum-flux-parametron logic circuits based
on efficient cartesian genetic programming,” in ACM/IEEE Design
Automation Conference (DAC), 2024.

[12] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic
quantum flux parametron as an ultra-low-power logic device,” Supercon-
ductor Science and Technology, vol. 26, no. 3, p. 035010, 2013.

[13] M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada,
H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single
quantum flux device for josephson supercomputer,” IEEE Transactions
on Applied Superconductivity (TASC), vol. 1, no. 2, pp. 77–89, 1991.

[14] T. Toffoli, “Reversible computing,” in Automata, Languages and Pro-
gramming, vol. 85, 1980, pp. 632–644.

[15] E. Fredkin and T. Toffoli, “Conservative logic,” International Journal
of Theoretical Physics, vol. 21, pp. 219–253, 1982.

[16] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
An online resource for reversible functions and reversible circuits,” in
International Symposium on Multiple Valued Logic (ISMVL), 2008, pp.
220–225, RevLib is available at http://www.revlib.org.

[17] M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli, “Design
automation and design space exploration for quantum computers,” in
IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE),
2017, pp. 470–475.

[18] R. P. Feynman, “Simulating physics with computers,” International
Journal of Theoretical Physics, vol. 21, no. 6-7, pp. 467–488, 1982.

[19] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Adiabatic quantum-flux-
parametron cell library adopting minimalist design,” Journal of Applied
Physics, vol. 117, no. 17, p. 173912, 05 2015.

[20] R. Cai, O. Chen, A. Ren, N. Liu, N. Yoshikawa, and Y. Wang, “A
buffer and splitter insertion framework for adiabatic quantum-flux-
parametron superconducting circuits,” in IEEE International Conference
on Computer Design (ICCD), 2019, pp. 429–436.

[21] G. Meuli, V. Possani, R. Singh, S.-Y. Lee, A. T. Calvino, D. S.
Marakkalage, P. Vuillod, L. Amaru, S. Chase, J. Kawa, and
G. De Micheli, “Majority-based design flow for AQFP superconducting
family,” in IEEE/ACM Proceedings Design, Automation and Test in
Eurpoe (DATE), 2022, pp. 34–39.

[22] R. Fu, J. Huang, M. Wang, Y. Nobuyuki, B. Yu, T.-Y. Ho, and O. Chen,
“BOMIG: A majority logic synthesis framework for aqfp logic,” in
IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE),
2023, pp. 1–2.

[23] C.-Y. Huang, Y.-C. Chang, M.-J. Tsai, and T.-Y. Ho, “An opti-
mal algorithm for splitter and buffer insertion in adiabatic quantum-
flux-parametron circuits,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2021, pp. 1–8.

[24] S.-Y. Lee, H. Riener, and G. De Micheli, “Beyond local optimality of
buffer and splitter insertion for AQFP circuits,” in ACM/IEEE Design
Automation Conference (DAC), 2022, pp. 445–450.

[25] R. Fu, M. Wang, Y. Kan, N. Yoshikawa, T.-Y. Ho, and O. Chen, “A
global optimization algorithm for buffer and splitter insertion in adiabatic
quantum-flux-parametron circuits,” in IEEE/ACM Asia and South Pacific
Design Automation Conference (ASPDAC), 2023, pp. 769–774.

[26] R. Fu, M. Wang, Y. Kan, O. Chen, N. Yoshikawa, B. Yu, and T.-Y.
Ho, “Buffer and splitter insertion for adiabatic quantum-flux-parametron
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2024.

[27] Y.-C. Chang, H. Li, O. Chen, Y. Wang, N. Yoshikawa, and T.-Y. Ho,
“ASAP: An analytical strategy for AQFP placement,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2020,
pp. 1–7.

[28] P. Dong, Y. Xie, H. Li, M. Sun, O. Chen, N. Yoshikawa, and Y. Wang,
“TAAS: A timing-aware analytical strategy for AQFP-capable placement
automation,” in ACM/IEEE Design Automation Conference (DAC), 2022,
pp. 1321–1326.

[29] R. Fu, O. Chen, B. Yu, N. Yoshikawa, and T.-Y. Ho, “DLPlace: A
delay-line clocking-based placement framework for AQFP circuits,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2023, pp. 1–8.

[30] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in
Genetic Programming. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 121–132.

[31] J. F. Miller, “Cartesian genetic programming: its status and future,”
Genetic Programming and Evolvable Machines, vol. 21, pp. 129 – 168,
2019.

[32] A. Manazir and K. Raza, “Recent developments in cartesian genetic
programming and its variants,” ACM Computing Surveys, vol. 51, no. 6,
2019.

[33] Z. Vasicek and L. Sekanina, “Formal verification of candidate solutions
for post-synthesis evolutionary optimization in evolvable hardware,”
Genetic Programming and Evolvable Machines, vol. 12, pp. 305–327,
2011.

[34] Z. Vasicek and L. Sekanina, “How to evolve complex combinational
circuits from scratch?” in IEEE International Conference on Evolvable
Systems (ICES), 2014, pp. 133–140.

[35] Z. Vasicek, “Cartesian GP in optimization of combinational circuits with
hundreds of inputs and thousands of gates,” in Genetic Programming,
2015, pp. 139–150.

[36] J. Kocnova and Z. Vasicek, “EA-based resynthesis: An efficient tool for
optimization of digital circuits,” Genetic Programming and Evolvable
Machines, vol. 21, no. 3, pp. 287–319, 2020.

[37] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in International Conference on Computer-Aided Ver-
ification (CAV), 2010, pp. 24–40.

[38] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, S.-Y. Lee, A. Tempia Calvino, and G. Marakkalage,
Dewmini Sudara De Micheli, “The EPFL logic synthesis libraries,”
2022, arXiv:1805.05121v3.

[39] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, 2008, pp. 337–340.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

Rongliang Fu received his BS degree in software
engineering from the Northwestern Polytechnical
University, Xi’an, China, in 2018 and his MS degree
in computer science and technology from the Uni-
versity of Chinese Academy of Sciences, Beijing,
China, in 2021. He is currently studying for his Ph.D
degree in the Department of Computer Science and
Engineering, The Chinese University of Hong Kong.
His research interests include electronic design au-
tomation and computer architecture.

Robert Wille is a Full and Distinguished Professor
at the Technical University of Munich, Germany, and
Chief Scientific Officer at the Software Competence
Center Hagenberg, Austria. He received the Diploma
and Dr.-Ing. degrees in Computer Science from the
University of Bremen, Germany, in 2006 and 2009,
respectively. Since then, he worked at the University
of Bremen, the German Research Center for Artifi-
cial Intelligence (DFKI), the University of Applied
Science of Bremen, the University of Potsdam, and
the Technical University Dresden. From 2015 until

2022, he was Full Professor at the Johannes Kepler University Linz, Austria,
until he moved to Munich. His research interests are in the design of circuits
and systems for both conventional and emerging technologies. In these areas,
he published more than 400 papers and served in editorial boards as well as
program committees of numerous journals/conferences such as TCAD, ASP-
DAC, DAC, DATE, and ICCAD. For his research, he was awarded, e.g., with
Best Paper Awards, e.g., at TCAD and ICCAD, an ERC Consolidator Grant,
a Distinguished and a Lighthouse Professor appointment, a Google Research
Award, and more.

Nobuyuki Yoshikawa (F’24) is a professor at the
Institute of Advanced Sciences (IAS) at Yokohama
National University (YNU), where he leads the
superconductivity electronics group. He earned his
Ph.D. in Electrical and Computer Engineering (ECE)
from YNU in 1989 and has since been affiliated
with YNU’s ECE Department. His research pri-
marily centers on superconductive devices and their
integration into digital and analog circuits. Presently,
his focus is on developing highly energy-efficient
superconducting digital circuits, particularly those

that employ Adiabatic Quantum-Flux Parametron (AQFP) and Single Flux
Quantum (SFQ) logic, with an aim towards high-performance computing
applications. In 2023, he was honored with the IEEE Council on Supercon-
ductivity (CSC) Award for Continuing and Significant Contributions in the
field of Applied Superconductivity. He is also a Fellow of the IEEE.

Tsung-Yi Ho (F’24) is a Professor in the Depart-
ment of Computer Science and Engineering, The
Chinese University of Hong Kong (CUHK). He
received his Ph.D. in Electrical Engineering from
National Taiwan University in 2005. His research
interests include several areas of computing and
emerging technologies, especially in the design au-
tomation of microfluidic biochips. He was a recipient
of the Best Paper Award at the IEEE Transactions
on Computer-Aided Design of Integrated Circuits
and Systems in 2015. Currently, he serves as the

VP Conferences of IEEE CEDA, and the Executive Committee of ASP-DAC
and ICCAD. He is a Distinguished Member of ACM and a Fellow of IEEE.

