
1

Buffer and Splitter Insertion for Adiabatic
Quantum-Flux-Parametron Circuits

Rongliang Fu, Mengmeng Wang, Yirong Kan, Olivia Chen, Nobuyuki Yoshikawa Fellow, IEEE, Bei Yu,
and Tsung-Yi Ho Fellow, IEEE

Abstract—The extremely low-bit energy characteristic of the
adiabatic quantum-flux-parametron (AQFP) circuit makes it
a promising candidate for highly energy-efficient computing
systems. However, by contrast with conventional circuit design,
general logic synthesis tools can not make sure that the circuit
functionality of generated AQFP circuits is correct. AQFP circuits
require buffer and splitter insertion for dataflow synchronization
at all clock phases of the circuit and multi-fan-out driving.
Notably, buffers and splitters inserted take up much area and
delay in AQFP circuits, also causing a significant increase in
energy dissipation. To address this problem, this paper analyzes
in detail why buffer and splitter insertion is necessary for
AQFP circuits and proposes a global optimization framework
for this purpose. This framework consists of three parts: (i)
logic level assignment, (ii) splitter tree generation, and (iii) buffer
insertion. An integer linear programming algorithm is proposed
for the logic level assignment to estimate the globally optimal
number of inserted buffers and splitters. Subsequently, a dynamic
programming-based multi-way search tree generation algorithm
is proposed to construct an optimal splitter tree for each net
of the input circuit. Moreover, three optimization strategies are
proposed to further enhance the effectiveness and efficiency of
our framework. Experimental results on ISCAS’85 and EPFL
benchmarks demonstrate the effectiveness and efficiency of our
proposed framework compared with the state-of-the-art, partic-
ularly with significant advantages on large circuits.

Index Terms—Superconducting electronics, AQFP, buffer and
splitter insertion, dynamic programming, integer linear program-
ming

I. INTRODUCTION

The increasing demand for high computational speed and
low power consumption has led to a significant challenge in
the field of semiconductor integrated circuits. In this context,
Josephson junction (JJ)–based superconducting logic circuits
have emerged as a promising alternative to traditional comple-
mentary metal-oxide-semiconductor (CMOS) technology for
future computing systems, owing to their high speed and low-
power consumption characteristics. As the active component

The work described in this paper was conducted in the Intelligent Design
Automation Lab funded by The Hong Kong Jockey Club Charities Trust.

Rongliang Fu, Bei Yu, and Tsung-Yi Ho are with the Department of
Computer Science and Engineering, The Chinese University of Hong Kong,
Hong Kong 999077, China. E-mail: {rlfu, byu, tyho}@cse.cuhk.edu.hk.

Mengmeng Wang and Nobuyuki Yoshikawa are with the Depart-
ment of Electrical and Computer Engineering, Yokohama National Uni-
versity, Yokohama 240-8501, Japan. E-mail: wang-mengmeng-kj@ynu.jp,
nyoshi@ynu.ac.jp.

Yirong Kan is with the Division of Information Science, Nara In-
stitute of Science and Technology, Nara 630-0192, Japan. E-mail:
kan.yirong@is.naist.jp.

Olivia Chen is with the Department of Advanced Information Technology,
Kyushu University, Fukuoka 819-0395, Japan. E-mail: olivia@ait.kyushu-
u.ac.jp.

TABLE I: The comparison between CMOS and AQFP.

Circuit AQFP CMOS

Active component Josephson junction Transistor
Passive component Inductor Capacitor
Information Current pulse Voltage level
Clocking scheme Synchronization (Clock signal) Asynchronization
Fan-out 1 (Splitter for multiple fan-outs) ≥ 1

Power Alternating current Direct current

of superconducting logic circuits, Josephson junctions serve as
superconducting switching devices and offer rapid switching
capabilities (approximately 1 ps per switch) with remarkably
low energy consumption (less than 10−19 J per switch) [1].
These devices transmit information through voltage pulses that
propagate along superconducting transmission lines almost
without loss. Among the superconducting logic families, adia-
batic quantum-flux-parametron (AQFP) logic [2] has garnered
significant attention due to its highly energy-efficient nature.
Derived from quantum-flux-parametron (QFP) logic proposed
in 1985 [3], [4], AQFP logic applies the adiabatic switching
operations to reduce energy dissipation substantially. Further-
more, AQFP logic utilizes alternating current (AC) for both
clock signals and power supplies, thereby reducing the power
consumption associated with direct current (DC) bias, while
operating at frequencies in the gigahertz range. The study [5]
has shown that the switching energy of an AQFP gate ranges
from 10−20 J to 10−21 J at 5GHz operation.

However, despite these advantages of AQFP logic, the
unique characteristics of AQFP logic pose challenges in terms
of the direct application of electronic design automation (EDA)
tools to AQFP logic, which are typically designed for CMOS
technology. TABLE I highlights the fundamental disparities
between AQFP and CMOS technologies that make it necessary
to develop customized EDA tools for AQFP logic. Firstly,
each AQFP logic gate requires a clock signal to release its
data signal to its successors and reset its state. That is, AQFP
circuits are pipelined in nature. This necessitates the insertion
of multiple buffers to ensure that all input data paths to the
logic gate from primary inputs (PIs) have an equivalent number
of logic gates (namely logic level), thereby ensuring correct
circuit operation. Secondly, due to the driving limitation in
output current, an AQFP logic gate can only drive one output.
Addressing this limitation requires the insertion of a specially
designed gate, known as a splitter, to enable multiple fan-
outs. Therefore, buffer and splitter insertion is a critical step in

AQFP circuit design, and its legal implementation is essential
to ensure the operation of an AQFP circuit is logically correct.

Currently, buffers and splitters still take up over half of
the JJ count in the final AQFP circuit. As mentioned above,
the JJ is an important component of AQFP circuits. Since
its quantity is positively correlated with the area, delay, and
energy consumption of AQFP circuits, its quantity serves
as a critical metric in the performance estimation of AQFP
circuits. So, given the rapid growth of fabrication capabilities
for larger and more complex circuits, there is a pressing need
for optimization algorithms of buffer and splitter insertion
in AQFP circuits. The studies [6] and [7] inserted splitters
and buffers separately after conventional logic synthesis, and
then used timing-like heuristic algorithms to optimize the
number of buffers and splitters inserted. In [8], a heuristic
method was applied to implement non-redundant buffer and
splitter insertion by scheduling and moving groups of gates,
namely chunks. Although this method can reduce the number
of buffers and splitters, the process of chunked movement may
be endless due to alternating local moves in an upward or
downward direction. Additionally, [9] focused on the buffer
and splitter insertion problem on a single net. It introduced
a dynamic programming-based algorithm that can provide
an optimal solution of buffer and splitter insertion for each
net within the input circuit after initializing a net delay
assignment. However, it lacks a global optimization for the
net delay assignment. Furthermore, [10] formulated the buffer
and splitter insertion as a scheduling problem and also used a
heuristic method to move chunks.

This paper focuses on how to minimize the number of
buffers and splitters inserted after logic optimization from
the perspective of overall circuit optimization on the basis
of ensuring the legality of the AQFP circuit. This paper
comprehensively analyzes the operation mechanism of AQFP
logic and explains the reason of buffer and splitter insertion.
To address this problem, we propose a global optimization
framework to address the buffer and splitter insertion problem.
It splits the buffer and splitter insertion process into three steps:
(i) logic level assignment, (ii) splitter tree generation, and (iii)
buffer insertion. First, we propose an integer linear program-
ming (ILP)–based algorithm for the logic level assignment to
estimate the globally optimal number of inserted buffers and
splitters. Then, we propose a dynamic programming-based
multi-way search tree generation algorithm to construct an
optimal splitter tree for each net of the input circuit under
a given logic level assignment. Finally, we insert the corre-
sponding number of buffers according to the logic level gap
on each net. Moreover, we present the following optimization
strategies to improve the proposed framework.

• We apply a directed acyclic graph-based longest path
algorithm to calculate the minimum logic level of each
node as its lower boundary to accelerate solving the
proposed ILP model.

• We design a new splitter tree constraint set to speed up the
construction of the ILP model. The new design reduces
the constraint scale for each splitter tree from exponential
to linear.

• We explore the incorporation of circuit depth within the

JJ-level schematic of an AQFP buffer

Buffer
Xin Xout

data

out

din dout

L1 L2J1 J2

Lq

I

Iout

Idata I

“1” “0”

I I

Lout

kout

(a)

MAJM
a

out

Buffer Buffer Buffer

b c

3-to-1 branch

Xin
din

Xout
dout

(b)

NAND
a

out

INV 1 INV

b
Constant 1

Xin Xout
din dout

(c)

Fig. 1: (a) is a JJ-level schematic of an AQFP buffer. (b) and
(c) are schematics of AQFP majority (MAJ) and NAND gates.

objective function of the proposed ILP model and design
a new objective function to jointly optimize the circuit
depth and the number of inserted buffers and splitters.

Moreover, experimental results on the ISCAS’85 [11] and
EPFL [12] benchmarks demonstrate the effectiveness and
efficiency of our proposed framework compared with the state-
of-the-art, including two methods from ICCAD’21 [9] and
DAC’22 [10].

• In terms of performance, our proposed framework with
optimizations yields effective results on ISCAS’85 and
simple arithmetic benchmarks [11], with an average re-
duction of 12.71% and 5.07% in the total number of in-
serted buffers and splitters compared with the methods in
ICCAD’21 [9] and DAC’22 [10], respectively. Addition-
ally, our framework can produce smaller or equal circuit
depths than others for all generated circuits. Moreover,
our proposed framework with optimizations is 417.01
times the speed of our framework without optimizations
[13] while exhibiting a marginal 0.13% reduction in the
number of inserted buffers and splitters.

• In terms of scalability, the experimentation extends to
larger-scale circuits sourced from the EPFL benchmark
[12]. Notably, our proposed framework achieves an aver-
age reduction of 32.06% and 9.13% in the total number of
inserted buffers and splitters over the baselines, respec-
tively. Meanwhile, our framework excels in efficiency,
showcasing an average runtime reduction of 83.20% and
27.04% over the baselines, respectively.

The rest of this paper is organized as follows. Section II
provides an overview of AQFP circuits and delves into the
necessity of buffer and splitter insertion within AQFP circuits.
Section III introduces the problem formulation. Section IV

2

Buffer

Ix2 Id Ix1 data

out

g1

g2

g3

g4

g5

phase 1

phase 2

phase 3

phase 4

phase 1

(a)

data
phase 1

(clock in)
phase 1

(data out)
phase 2

(clock in)
phase 2

(data out)
phase 3

(clock in)
phase 3

(data out)
phase 4

(clock in)
phase 4

(out)

1 clock
cycle

(b)

Fig. 2: (a) is an AQFP buffer chain driven by the 4-phase
clocking scheme, where the latency between two gates is a
quarter cycle of AC excitation currents Ix1

and Ix2
. (b) shows

data propagation between adjacent clock phases in (a).

describes our proposed buffer and splitter insertion frame-
work. Section V presents our optimizations for the proposed
framework. Section VI demonstrates the effectiveness and
efficiency of our framework. Section VII summarizes this
paper and discusses potential avenues for further optimizing
AQFP circuit design.

II. PRELIMINARIES

A. Adiabatic Quantum-Flux-Parametron Logic

AQFP logic employs adiabatic superconductors to achieve
the operation with energy dissipation levels approaching the
thermodynamic and quantum limits [14], making it a promis-
ing option for constructing highly energy-efficient computing
systems. Typically, AQFP logic cells are constructed by inte-
grating four fundamental components: Buffer, Inverter (INV),
Constant, and Branch. The buffer has two JJs J1 and J2, and
its JJ-level schematic is illustrated in Fig. 1(a), where L1 and
L2 are inductors, and Idin

is the DC. Initially, a small input
current Iin is applied to the buffer, followed by the supply
of AC excitation current IXin

to the inductors LX1
and LX2

,
which are magnetically coupled with L1 and L2 respectively.
Consequently, a single flux quantum (SFQ) is stored in either
the left loop (‘1’) or the right loop (‘0’). The output current
Iout is produced by the signal transformer, and its direction
indicates the logic state of the buffer. This signal transformer
contains two inductors Lq and Lout, which are coupled by
a coupling factor kout. Notably, if kout is positive, this cell
operates as a buffer; Conversely, it operates as an inverter.

The design of AQFP logic cells is exemplified through
AQFP majority (MAJ) and NAND gates. Fig. 1(b) showcases
an AQFP majority gate with the function M(a, b, c) = ab +
ac+bc, comprising three buffers and a 3-to-1 branch. The pres-
ence of the majority gate makes the majority-inverter graph
(MIG) a natural fit for AQFP circuit design. By fixing input
c to Constant 1 (0), an MAJ gate can become an OR (AND)

a b c

q
(a)

q

a b cbuffer

(b)

 + Id

 - Id

a

b

c

q

1 0

x x
(c)

a

b

c

q

1 0

 + Id

 - Id

(d)

Fig. 3: A gate-level schematic shows the necessity of buffer
insertion for correct operation in the AQFP circuit with the
function q = abc, where the 4-phase clocking scheme is
applied. (a) and (b) are schematics before and after buffer
insertion, respectively, where Ix1 and Ix2 are AC clock signals
with a phase separation of 90◦, and Id is the DC input, which
applies an offset flux of half an SFQ to each logic gate.
Besides, a, b, and c are three data inputs, and q is a data output;
(c) and (d) are timing schematics of (a) and (b), respectively.

gate with the function M(a, 1, b) = a + b (M(a, 0, b) = ab).
So, the 3-input majority gate, the 2-input AND gate, and the
2-input OR gate all have 6 JJs. Moreover, since the buffers and
inverters in AQFP logic are interchanged by adjusting kout, the
AQFP NAND gate can be designed by replacing two buffers
in the OR gate with two INVs, i.e., M(a, 1, b) = a+ b = ab,
as shown in Fig. 1(c).

B. Clock-synchronized Data Propagation of AQFP Logic

Since the operation of all AQFP gates is synchronized with
an AC power source that serves as both an excitation current
and a clock signal, the multi-phase clocking scheme is com-
monly employed in AQFP circuit design. This scheme utilizes
multiple clock sources with phase differences to facilitate data
propagation in AQFP circuits, where the clock signal should
arrive after the data signal during a certain period. Specifically,
this enables data transmission across various logic levels
during a substantial overlap of adjacent clock phases. Take the
4-phase clocking scheme [15] as an example. Fig. 2(a) shows
an AQFP buffer chain with the 4-phase clocking scheme. Ix1

3

data

out2out1
1-to-2 branch

Schematic of an AQFP splitter

data

Splitter
Xin
din

Xout
dout

Buffer
Xin
din

Xout
dout

out2out1

(a)

CMOS AQFP

CB

A

Splitter

A

CB

(b)

Fig. 4: (a) The schematic of a 1-to-2 splitter. (b) The multi-
fan-out comparison between CMOS logic and AQFP logic.

and Ix2 are two AC clock signals with a phase separation of
90◦, and Id is the DC input for an offset flux supply to each
logic gate. The input data in Fig. 2(a) propagates phase by
phase following clock signals, as shown in Fig. 2(b).

To ensure the operation of the AQFP circuit is correct, all
inputs to the AQFP gate must be in the same logic level.
To achieve this requirement, buffer insertion is essential. The
example shown in Fig. 3 illustrates the necessity of buffer
insertion in an AQFP circuit with the function q = abc. Two
inputs to AND gate g2 in Fig. 3(a) have different logic levels.
When the first rising edge of clock signal Ix2

arrives at AND
gate g2, a significant delay relative to input a results in a lack
of effective overlap between data signal a and clock signal
Ix2

. Consequently, the output ‘x’ of g2 in Fig. 3(c) may be
indeterminate [16]. Following the insertion of a buffer g3 in
Fig. 3(b), two inputs to gate g2 are now harmonized to the
same logic level, enabling gate g2 to output ‘1’ correctly, as
shown in Fig. 3(d).

C. Fan-out Limitation of AQFP Logic

In contrast to CMOS circuits, AQFP gates exhibit a low
output driving ability, typically only capable of driving a single
output. Consequently, the AQFP circuit design necessitates a
special cell, known as a splitter, to facilitate the realization
of multiple fan-outs. The splitter consists of a buffer and a
1-to-X branch, typically with 2 ≤ X ≤ 4. Fig. 4(a) shows
the schematic of a 1-to-2 splitter, where IXin is the AC clock
signal and din is the DC input. In an AQFP circuit, when
the output signal of a logic gate (A) needs to be transmitted
to multiple gates (B and C), splitters must be positioned at
its output to enable multiple fan-outs, as shown in Fig. 4(b).
Since the splitter requires a clock signal, its insertion for
multi-fan-out implementation can cause a delay increase in
the data path. This can impact buffer insertion for clock-
synchronized data propagation. Notably, diverse splitter tree
configurations for large fan-out implementation can result in
varying numbers of inserted buffers and splitters, as detailed
in our prior research [13].

D. Circuit Design of AQFP Logic

Given these unique characteristics of AQFP logic, the de-
sign of AQFP circuits diverges from that of CMOS circuits.
Existing methods typically separate the AQFP circuit design

process into two key phases, including logic optimization and
the subsequent insertion of buffers and splitters. Specifically,
early studies [17], [6] have leveraged the Yosys synthesis suite
[18], an open-source logic synthesis tool, to generate a CMOS-
like gate-level netlist. This netlist is then subject to buffer and
splitter insertion to align with AQFP circuit design requisites.
Yosys tool usually employs AND-OR-inverter (AOI)-based
logic optimization techniques to refine the given function
and subsequently can map the resultant intermediate netlist
into a custom AQFP standard cell library. However, owing
to the native majority cell in AQFP logic, which can have
a more compact representation for logic function with the
same physical overhead as the AND/OR cell, MIG-based logic
synthesis approaches [7], [19], [20] have been introduced for
AQFP circuits.

For instance, considering a 1-bit full adder, Fig. 5(a) shows
an AOI-based implementation with 8 gates and circuit depth
of 5, followed by MIG-based logic optimization to minimize
gate count and circuit depth, resulting in an MIG-based 1-
bit full adder with 3 gates and circuit depth of 2 as shown in
Fig. 5(b). Subsequent buffer and splitter insertion for Fig. 5(b)
yields the final legal 1-bit AQFP full adder with 4 buffers
and 4 splitters, as shown in Fig. 5(c). Furthermore, the latest
study [21] of AQFP logic synthesis integrates these two phases
and employs Bayesian optimization to explore the best MIG
structure concerning the actual AQFP cost after buffer and
splitter insertion for AQFP circuit design requisites.

III. PROBLEM FORMULATION

A. Terminology

An AQFP circuit can be represented by a directed acyclic
graph G(V,E), where V is the node set comprising logic
gates, and E is the edge set comprising nets. The node set
V = I ∪O∪C consists of the set I of primary inputs, the set
O of primary outputs (POs), and the set C of logic gates. For
a node v ∈ V , Ei(v) is the set of its input edges, and Eo(v) is
the set of its output edges. The edge set E = Eu∪Em consists
of the set Eu of 2-pin nets and the set Em of over-2-pin nets.
For an edge e ∈ E, es is the source of the edge e, and et is
the set of sinks of the edge e. If the edge e is a 2-pin net, i.e.,
e ∈ Eu, then |et| = 1, otherwise |et| > 1, e ∈ Em. Following
buffer and splitter insertion, an extended graph G′(V ′, E′) can
be derived, where V ′ = V ∪ B ∪ S, with B and S denoting
the sets of buffers and splitters, respectively. The maximum
fan-out of the splitter is denoted as X , where X > 1. For a
node v ∈ V , FI(v) and FO(v) represent the set of its fan-in
nodes and its fan-out nodes, respectively. Additionally, for a
PI i ∈ I , the set of its fan-in nodes is empty. For a PO o ∈ O,
the set of its fan-out nodes is also empty.

Furthermore, for uniformity in figures, all nodes are cate-
gorized into multiple columns in terms of their logic level, as
shown in Fig. 6. So, for any node v ∈ Vi in the ith column, its
logic level is i, i.e., L(v) = max

u∈FI(v)
L(u)+ 1 = i, v ∈ Vi. This

paper assumes that all primary inputs arrive at the same clock
phase and that all primary outputs are also produced at the
same clock phase. That is, all primary inputs are allocated to
the first column, and all primary outputs are allocated to the

4

| &a
b

c

& | carry

sum|&

| &

& |AND OR

(a)

M

a

b

c M

M sum

carry

MajorityM

(b)

B

M

a

b

c M

M sum

carry

S

S B

S

S

B

B
S
B

Splitter
Buffer

(c)

Fig. 5: The example of a 1-bit AQFP full adder circuit design. (a) An AOI-based 1-bit full adder. (b) MIG-based optimized
result of (a). (c) Legal 1-bit AQFP full adder circuit after buffer and splitter insertion for (b).

last column. Therefore, the logic level of each primary input
is set to 0, while the logic level of each primary output is the
maximum logic level lmax, corresponding to the circuit depth
d = lmax − 1. To minimize the circuit depth, the logic level
of primary outputs should be minimized.

B. Problem Formulation

The primary focus of this paper is the buffer and splitter
insertion for AQFP circuits. Given that the JJ number of a
buffer is the same as that of a splitter, the minimization of
the total JJ number caused by buffer and splitter insertion can
be equivalent to that of the total number of inserted buffers
and splitters. Our objective is to minimize the number of
inserted buffers and splitters while meeting the requirements
of AQFP circuit design. Therefore, the buffer and splitter
insertion problem for AQFP circuit design can be formulated
as follows:

• Input:
1) A given circuit G(V,E),
2) The maximum fan-out X of the splitter.

• Output:
An extended circuit G′(V ′, E′), where all inputs to each
logic gate have the same logic level and all gate outputs
have a single fan-out.

• Constraints:
1) Fan-out limitation:

∀e ∈ E′, |et| = 1, (1)

which ensures that each edge in circuit G′ has only
two pins, including one source and one sink.

2) Path balance:

∀u ∈ FI(v), v ∈ V ′, L(v) = L(u) + 1, (2)

which ensures that all inputs to each node in circuit
G′ have the same logic level, thus enabling circuit
G′ to meet the prerequisite for clock-synchronous data
propagation.

3) PI alignment:
∀i ∈ I, L(i) = 0, (3)

which makes primary inputs arrive at the same clock
phase.

4) PO alignment:

∀o ∈ O,L(o) = max
v∈V ′

L(v) + 1, (4)

g4

I1

I2

I3

g1 O1
O2g3S

S

S
PIs POs

g0

g2

 Splitter Tree Generation Buffer Insertion

Logic gate

0 lmax

 Logic Level Assignment

B

B
Logic level

Fig. 6: The flow of the proposed method contained logic level
assignment, splitter tree generation, and buffer insertion.

which makes primary outputs occur at the same clock
phase.

So, Equations (1) and (2) guarantee the final circuit is
legal after buffer and splitter insertion.

• Goal:
min
G′

|S ∪B|, (5)

which means minimizing the number of buffers and
splitters inserted into circuit G′ while maintaining the
functional structure of the original circuit G.

IV. BUFFER AND SPLITTER INSERTION

This section proposes a global optimization framework
for buffer and splitter insertion, as shown in Fig. 6. This
framework divides the process of buffer and splitter insertion
into three phases. First, an integer linear programming model
is proposed to assign the logic level for each logic gate. Then,
based on a predefined logic level assignment, splitter trees
are generated for all over-2-pin nets by an optimal multi-way
search tree generation method. Finally, buffers are inserted for
all 2-pin nets to ensure the path balance.

The assignment of logic levels to all logic gates within
circuit G has a significant impact on the result of its buffer
and splitter insertion. Fig. 7 showcases two distinct solutions
for buffer and splitter insertion of the input circuit shown in
Fig. 7(a). It is assumed that inserting buffers and splitters
is optimal after assigning the logic level of each logic gate.
Fig. 7(b) heuristically determines the logic levels of logic
gates, i.e., L(g1) = 3, L(g2) = 3, L(g3) = 2, L(g4) = 4,
and L(g5) = 5. After inserting buffers and splitters, the result
requires eight buffers and three splitters, as shown in Fig. 7(c).
By contrast, Fig. 7(d) makes an optimal logic level assignment
for all logic gates, i.e., L(g1) = 2, L(g2) = 3, L(g3) = 3,

5

I2 g1 g4
g5g2

g3

I1

I3
I4

O

PIs
POs

Logic gate

(a)

I2 g1 g4
g5g2

g3

I1

I3
I4

O

0 1 2 3 4 5 6
Logic level

(b)

I2 g1 g4
g5g2

g3

I1

I3
I4

O

S

S S

B

B B

B B

B

B B

0 1 2 3 4 5 6

(c)

I2 g1 g4
g5g2

g3

I1

I3
I4

O

0 1 2 3 4 5

(d)

I2 g1 g4

g5g2
g3

I1

I3
I4

O

S

S
S

B

B

B

B

B

0 1 2 3 4 5

(e)

Fig. 7: The example of buffer and splitter insertion under various logic level assignments when a maximum fan-out of the
splitter of 2. (a) is the initial input circuit. (b) and (d) show its two distinct logic level assignment solutions, where the orange
number at the top of each column denotes the logic level of each node within the respective column. Subsequently, (c) and
(e) show the results after buffer and splitter insertion corresponding to the configurations in (b) and (d), respectively.

L(g4) = 3, and L(g5) = 4. Following inserting buffers and
splitters, the final result only requires five buffers and three
splitters, as shown in Fig. 7(e). Moreover, the circuit depth of
Fig. 7(e) is also one smaller than that of Fig. 7(c). Therefore,
the key to the buffer and splitter insertion problem is to
handle the logic level assignment from the global perspective
to minimize the number of buffers and splitters required.

A. Logic Level Assignment

Definition 1 (Multi-way Tree). A multi-way tree is a tree data
structure where each node has multiple children. For instance,
all nodes in a X-way tree have at most X children.

Definition 2 (Complete Multi-way Tree). A complete multi-
way tree is a multi-way tree in which all the levels are
completely filled except the lowest-level nodes, which are filled
from as far left as possible. For instance, all nodes in a
complete X-way tree that are not in the last level have X
children.

Definition 3 (Path Sum). The path sum of a node v in a multi-
way tree is the index of the layer where node v is located,
i.e. the depth of node v in this multi-way tree.

In this paper, we denote the aggregate sum of all leaves’
path sums as the all path sum of the multi-way tree.

Lemma 1. Given a complete X-way tree with n leaves, its
tree depth is h(n,X) = ⌈logX n⌉.

Lemma 2. Given a complete X-way tree with n leaves, the

number of its non-leaf nodes is β(n,X) = ⌈
n− 1

X − 1
⌉.

Lemma 3. Given a complete X-way tree with n leaves,
the number of nodes in the ith level is ℓ(i,X) =
Xi, i ∈ [0, h(n,X)), and the number of nodes in the last

level is ℓ(h(n,X), X) = ⌈
n− ℓ(h(n,X)− 1, X)

X − 1
⌉ + n −

ℓ(h(n,X)− 1, X).

Lemma 4. Given a complete X-way tree with n leaves,
its all path sum is f(n,X) = ℓ(h(n,X), X) ∗ h(n,X) +
(n− ℓ(h(n,X), X)) ∗ (h(n,X)− 1).

The assignment of the logic level for each logic gate can be
achieved by estimating the minimum number of buffers and
splitters necessary for the circuit. Since the delay between
two connected gates is contingent upon the gap of their
logic levels, the total delay of a net e can be calculated as
p(e) =

∑
t∈et

(L(t)− L(es)− 1). In the case of a 2-pin net, the

number of buffers inserted is equal to its delay, while for an
over-2-pin net, the number of inserted buffers is less than its
delay due to the presence of inserted splitters. However, the
dynamic nature of the splitter tree structure for an over-2-pin
net poses challenges in accurately calculating the minimum
number of buffers and splitters inserted for this net. To address
this challenge, the utilization of the complete multi-way tree
is advocated in the logic level assignment process to evaluate
the number of buffers and splitters required by an over-2-pin
net e. That is because the complete multi-way tree has the
minimum number of nodes and the minimum tree depth for
the same number of leaves according to Theorems 1 and 2,
thereby requiring that all path sum f (|et| , X) of the splitter
tree is no less than that of the complete multi-way tree with
|et| leaves, namely, the fan-out limitation constraint.

Theorem 1. Given a tree with n leaves where each node has
at most X children, it has the minimum number of nodes when
it is a complete X-way tree.

Proof. Assume that there exists a tree A with n leaves and
each non-leaf node having at most X children that has fewer
nodes than a complete X-way tree B with n leaves. So, tree
A must have fewer non-leaf nodes than tree B. According
to Definition 2, each non-leaf node in a complete X-way
tree has exactly X children, except for the nodes at the last
level. So, non-leaf nodes in tree A with more than X children
exist, which contradicts the assumption. Therefore, a complete
multi-way tree has the minimum number of nodes.

Theorem 2. Given a tree with n leaves where each node has
at most X children, it has the minimum tree depth when it is
a complete X-way tree.

Proof. Assume that there exists a tree A with n leaves and
each non-leaf node having at most X children that has a
shallower depth than a complete X-way tree B with n leaves.

6

So, tree A must have fewer levels than tree B. According
to Definition 2, each level within tree B is completely filled
with the maximum possible number of nodes as many as
possible. In tree A, there can be levels with fewer nodes than
the maximum possible number of nodes. This means that tree
A requires more levels to accommodate the same number of
leaves as tree B, which contradicts the assumption. Therefore,
a complete multi-way tree has the minimum tree depth.

Specifically, a complete X-way tree with |et| leaves is first
built, enabling the computation of its all path sum denoted as
f (|et| , X) and the number of its non-leaf nodes denoted as
β (|et| , X). Subsequently, the residual shared delay from all
leaf nodes can be fulfilled by a buffer chain, the length of
which can be approximated to p(e)−f(|et|,X)

|et| . Consequently,
the number of buffers and splitters required by the net e can
be approximated to p(e)−f(|et|,X)

|et| +β (|et| , X), that is, the sum
of the length of the buffer chain and the number of non-leaf
nodes in the complete X-way tree. For instance, assuming a
maximum fan-out of 2 for the splitter in Fig. 6, the (3+1)–pin
net between the source g0 and the sinks (g1, g2, and g3) can
consist of a buffer chain with only one buffer and a complete
binary tree with two splitters as non-leaf nodes. Therefore, the
number of buffers and splitters required by the circuit can be
formulated as:∑

e∈Eu

p(e) +
∑

e∈Em

(
p(e)− f (|et| , X)

|et|
+ β (|et| , X)

)
. (6)

According to Lemmas 1 to 4, f (|et| , X) and β (|et| , X)
are constants for a specified edge e and a maximum fan-out
of X . Therefore, the problem of minimizing the number of
splitters and buffers can be formulated as an integer linear
programming problem as follows:

min
∑
e∈E

(
1

|et|
∗
∑
v∈et

L(v)− L(es)

)
, (7)

s.t. ∀v ∈ I, L(v) = 0, (8)
∀v, u ∈ O,L(v) = L(u), (9)
∀v ∈ O ∪ C, ∀u ∈ FI(v), L(v) ≥ L(u) + 1, (10)

∀e ∈ Em,∀s ⊆ et,
∑
t∈s

(L(t)− L(es)− 1) ≥ f(|s| , X).

(11)

Considering two examples in Figs. 7(b) and 7(d), their
values corresponding to Equation (7) are 115

6 and 97
6 , re-

spectively, thereby demonstrating the capability of our ILP
model in distinguishing the superior logic level assignment.
Equations (8) and (9) align PIs and POs so that all PIs and all
POs are on the first and last levels, respectively. To limit the
fan-out number of the edge e, as shown in Equation (11), all
path sum of the multi-way tree constructed from any subset s
of its sinks et must be no less than that of the complete multi-
way tree with |s| leaves, that is because the complete multi-
way tree can meet the fan-out requirement with the minimum
all path sum. For Equation (11), it is imperative to enumerate
all potential subsets of sinks associated with each edge. To

enumerate all subsets of sinks et for the edge e, the following
characteristic function χs(x) is employed to identify whether
the sink x ∈ et exists s.

χs(x) =

{
1 if x ∈ s,

0 if x /∈ s.
(12)

{χs(x) |x ∈ et} can be represented by a 0-1 sequence. For
example, considering the sinks et = {x1, x2, x3, x4, x5},
{x1, x2, x4} can be encoded as 11010. Consequently, all
possible sink combinations within et, i.e., all subsets of sinks
et, can be generated by full permutations of the 0-1 sequence
of length |et|. Then, the sinks corresponding to the index of
the ‘1’ element in each permutation form a subset.

However, there are 2|et| subsets for the edge e, which
renders the exhaustive enumeration of all subsets infeasible for
the edge with a substantial number of sinks. While increasing
the number of enumerated subsets may enhance the adequacy
of splitter tree constraints, it is essential to consider the trade-
off between effectiveness and efficiency. Therefore, for edges
with over 30 sinks, an approximate approach is adopted where
|et| rank sequences are initially generated via the random
shuffle algorithm, each sequence determining the specific sink
order. Subsequently, for the sink set ordered by each sequence,
subsets ranging in length from 2 to |et| are selectively chosen
from the left, resulting in a total of |et| ∗ (|et| − 1)/2 subsets.
Through this method, a total of |et| ∗ |et| ∗ (|et| − 1)/2
subsets are effectively selected to govern the maximum out-
degree of all nodes within the multi-way tree. Given the
complexity arising from the multitude of decision variables
and constraints, determining the appropriate range for decision
variables becomes challenging. Consequently, an integer lin-
ear programming solver incorporating a linear programming-
based branch-and-bound algorithm is leveraged to address and
resolve the optimization problem outlined in Equation (7),
ultimately facilitating the determination of the logic level for
each logic gate.

B. Splitter Tree Generation

After assigning the logic level of each logic gate, the
primary concern shifts to the buffer and splitter insertion
problem for a single net. For a 2-pin net, the number of
required buffers is equivalent to its delay, without the need for
any splitters. For an over-2-pin net, the task involves creating
a splitter tree composed of buffers and splitters. This process
poses a huge challenge due to the dynamic nature of the splitter
tree structure. To address this problem, we regard the splitter
tree constructed for each single net as a multi-way search tree,
where the delay of each node serves as its key, and the number
of non-leaf nodes indicates the number of buffers and splitters
required. The following terms are defined to solve the splitter
tree generation problem of a (n+ 1)-pin net e.

• The nodes of the splitter tree: The leaf nodes of the
splitter tree represent the sinks et of the net e, where
n = |et| , n ≥ 1. The out-degree of each non-leaf node
must be in the range [1, X]. A non-leaf node is a buffer
if its out-degree is 1; otherwise, it is a splitter. Besides,
the delay of the leaf node v is denoted as v.delay.

7

Algorithm 1: Optimal splitter tree generation
Input: An over-2-pin net e with a source s and n sinks

t, and the maximum fan-out X of the splitter
Output: A generated splitter tree

1 ti.delay = L (ti)− L(s)− 1, i ∈ [1, n]
2 Reorder t in ascending order based on their delays
3 H = ⌈logX n⌉+ 1
4 D = max

i∈[1,n]
ti.delay +H

5 dp = {+∞,+∞,+∞}n×n×X×(D+1)

6 pt = {−1,−1}n×n×X×(D+1)

7 // Initialization
8 for s ∈ [1,min {n,X}]; l ∈ [1, n− s+ 1] do
9 Dc = tl.delay +H

10 r = l + s− 1
11 if s == 1 then
12 for d = 0 to Dc do
13 δ = |d− tl.delay|
14 dpl,l,1,d = d > tl.delay? {δ, δ, 0} : {0, 0, δ}

15 else
16 dpl,r,s,Dc

= dpl,r−1,s−1,Dc
+ dpr,r,1,Dc

17 // Calculate the minimum cost
18 for len ∈ [2, n]; l ∈ [1, n− len+ 1] do
19 Dc = tl.delay +H
20 r = l + len− 1
21 for d = Dc − 1 to 0; s ∈ [1,min {len,X}] do
22 if s == 1 then
23 dpl,r,s,d =

min
k∈[1,min (len,X)]

dpl,r,k,d+1 + {0, 0, 1}

24 ptl,r,s,d = {−1, k}
25 else
26 dpl,r,s,d =

min
k∈[l+u−1,r−v]
s=u+v,u∈[1,s)

dpl,k,u,d + dpk+1,r,v,d

27 ptl,r,s,d = {k, u}

28 return a splitter tree built by backtracking using pt

• The generation cost of the splitter tree: The number of
inserted buffers and splitters in the generated splitter tree
must be minimized. Furthermore, in order to uphold the
integrity of the logic level assignment outcome, two extra
costs are introduced. First, since the delay of each leaf is
fixed based on assigned logic levels, we should minimize
the increase in it to avoid the impact on other nodes.
Second, we also minimize the total extra delay to prevent
adverse repercussions on the result of the logic level
assignment. Therefore, for a generated splitter tree, its
cost [9] {ed, ted, nn} consists of three parts, including
maximum extra delay ed = max

t∈et
d(t)− t.delay of leaf

nodes, total extra delay ted =
∑
t∈et

{d(t)− t.delay} of

leaf nodes, and the number of non-leaf nodes nn of
generated tree. Moreover, we define the addition op-

eration of two costs {ed1, ted1, nn1} , {ed2, ted2, nn2}
as {max {ed1, ed2} , ted1 + ted2, nn1 + nn2}. The com-
parison operation between two costs is performed item by
item, with the priority decreasing from left to right.

Inspired by the optimal multi-way search tree [22], an
optimal splitter tree generation algorithm based on dynamic
programming is proposed, as shown in Algorithm 1. This
algorithm can ensure the optimality of buffer and splitter
insertion for a single net under a specified logic level as-
signment. Firstly, the delay of each leaf node is calculated
(line 1). Then, leaf nodes t are reordered in ascending order
regarding their delays (line 2), and the maximum tree depth
D is calculated (line 4). Since an X-way tree with n = |t|
leaf nodes has the minimum height H = ⌈logX n⌉+ 1 when
it is a complete X-way tree, there exists a splitter tree with
n leaf nodes, where the extra delay of its leaf node with the
maximum delay is at most H , meaning that the ed of the
optimal splitter tree is not greater than H . dp and pt are two
four-dimensional arrays. dpl,r,s,d records the cost of s splitter
subtrees with leaf nodes tl, tl+1, ..., tr, whose root nodes’
depth is d. ptl,r,s,d = {m, s′} records two substructures: one
{l,m, s′, d} with s′ root nodes and m − l + 1 leaf nodes
tl, tl+1, ..., tm, and the other {m+ 1, r, s− s′, d} with s− s′

root nodes and r − m leaf nodes tm+1, tm+2, ..., tr. When
m = −1, the current substructure has only one root node
with s′ fan-outs. Lines 5-16 initialize dp and pt. When the
substructure {l, r, s, d} with leaf nodes tl, tl+1, ..., tr has only
one root node (i.e., s = 1) in depth d, a buffer is inserted
(lines 22-24); otherwise, it is divided into two parts, and a
splitter is inserted (lines 25-27). After obtaining the total cost
dp1,n,1,0, an optimal splitter tree can be constructed by the
backtracking method using pt (line 28). The time complexity
and the space complexity of Algorithm 1 are O(Xn3⌈logX n⌉)
and O(Xn2⌈logX n⌉), respectively.

Fig. 8 shows an example of exploring an optimal splitter
tree for the (3 + 1)-pin net, which is marked by the red color
in Fig. 7(a). First, the delay of each leaf node is calculated, and
then all leaf nodes are sorted, as shown in Fig. 8(a). Fig. 8(b)
show the generated splitter tree and its final cost dp1,3,1,0.
That is, this splitter tree consists of only two splitters and has
no extra delay. When we start to construct this tree by the
backtracking method, pt1,3,1,0 = {−1, 2} indicates that the
substructure marked by the red box has one root node with two
fan-outs, thus turning into and visiting pt1,3,2,1. pt1,3,2,1 =
{1, 1} indicates that the substructure marked by the red box
in Fig. 8(c) needs to be divided into two parts, including one
with the leaf node g1, as shown in Fig. 8(d) and the other
with the leaf nodes g2 and g3, as shown in Fig. 8(e). Since the
substructure {1, 1, 1, 1} in Fig. 8(d) has only one leaf node, the
backtracking process can end. For the substructure {2, 3, 1, 1}
in Fig. 8(e), the above process needs to be repeated.

C. Buffer Insertion

After generating splitter trees for all over-2-pin nets, only
2-pin nets exist in the circuit. The buffers must be inserted for
all 2-pin nets E′ to achieve the path-balancing constraint in
Equation (2). Since each net e has only two pins, the number of

8

I2

1 2 2Delay
g1 g2 g3

(a)

I2

g1
g2 g3

S

S

dp1,3,1,0={0,0,2}
pt1,3,1,0={-1,2}

(b)

I2

g1
g2 g3

S

S

dp1,3,2,1={0,0,1}
pt1,3,2,1={1,1}

(c)

I2

g1
g2 g3

S

S

dp1,1,1,1={0,0,0}
pt1,1,1,1={-1,-1}

(d)

I2

g1
g2 g3

S

S

dp2,3,1,1={0,0,1}
pt2,3,1,1={-1,2}

(e)

Fig. 8: The example of exploring substructures. (a) shows a (3 + 1)-pin net from Fig. 7(a), and the red number at the bottom
of each leaf represents its delay. (b) – (e) show different substructures and their corresponding costs.

its required buffers is equal to its delay, i.e., the logic level gap
between its source es and its sink et. However, the extra delay
may exist after the splitter tree generation, thereby causing a
logic level change for certain nodes. To address this problem,
the ILP model proposed in Section IV-A can be simplified as
the following to re-calculate the final logic level of each node.

min
∑
e∈E′

(L(et)− L(es)), (13)

s.t. Equations (8) to (10). (14)

After solving this simplified ILP model using the ILP solver,
the final logic level of each node is determined. Following the
insertion of the corresponding number of buffers for all nets,
a legal AQFP circuit can be obtained. That is, the buffer and
splitter insertion process is completed.

V. OPTIMIZATIONS

Although the above buffer and splitter insertion framework
has achieved effective improvements in reducing the number
of inserted buffers and splitters, as evidenced in Section VI,
it is essential to note that this framework comes with a
significant runtime overhead. Upon conducting a thorough
analysis and comparison of the three phases within the pro-
posed framework, it became evident that the bottleneck lies in
the logic level assignment process described in Section IV-A.
Specifically, the construction and solution of the ILP model
take up a lot of time and act as the main contributors to the
runtime. Therefore, to enhance the efficiency of our proposed
framework, we re-optimize the design of the ILP model.
Furthermore, a re-evaluation of the objective function shown in
Equation (7) has led to a more comprehensive formulation to
further improve the effectiveness of our proposed framework.

A. Lower Boundary Constraints

The logic level of each node is determined by the con-
straints imposed by its neighboring nodes, as illustrated in
Equations (8) to (11). Notably, a node’s logic level has not
been restricted by its own characteristics. That is, it has no
lower and upper boundary. Given that the boundary setting
for new variables can benefit the solution of the ILP model,
this section will introduce how to calculate the lower boundary
of each node’s logic level.

I2 g1 g4
g5g2

g3

I1

I3
I4

O

PIs
POs

Logic gate

0 2 3 4 5
Logic level

1

Fig. 9: The example of the lower boundary of Fig. 7(a).

As illustrated in Fig. 7(a), the minimum logic level gap
between all directly connected nodes is set to 1 in the current
framework. Considering the edge with multiple sinks, the
insertion of at least one splitter between its source and sinks
is necessary. Consequently, the logic level gap between its
source and any of its sinks must be no less than 2. Based
on this observation, the constraint in Equation (10) can be
re-formulated as

∀e ∈ E,∀v ∈ et, L(v) ≥ L(es) + 1 + (|et| > 1 ? 1 : 0) . (15)

For instance, Fig. 9 provides an update about Fig. 7(a). Since
the red net has three sinks (g1, g2, and g3), the logic level gap
between the source I2 and these three sinks must be at least
2. This means that the logic levels of these three sinks are at
least 2. Furthermore, since the purple net has two sinks (g1
and g4), the logic level gap between the source I1 and these
two sinks must also be at least 2. However, a 2-pin net exists
between the source g1 and the sink g4. The logic level gap
between these two nodes must be at least 1. Consequently,
the logic level of g4 is determined to be at least 3, which is
the lower boundary of g4.

Algorithm 2 summarizes the flow of the logic level lower
boundary calculation. For a given circuit G(V,E), lower
boundaries lb of all nodes’ logic levels are initialized to 0
(line 2). Subsequently, a topological order V ′ is established
from PIs to POs for all nodes (line 3). Proceeding through
each node u in topological order (lines 4-10), the algorithm
iterates over its respective sinks. For the sink v, when the edge
between u and v has multiple fan-outs, the connection weight
w between u and v is set to 2; otherwise, this weight w is
set to 1 (line 6). Finally, if the sum of the lower boundary
lbu of node u and the weight w is greater than the current
lower boundary lbv of node v (line 8), an update is made to

9

Algorithm 2: Logic level lower boundary calculation
Input: A given circuit G(V,E), where n = |V |
Output: Lower boundaries of all nodes’ logic levels

1 m = 0
2 lb = {0}n
3 Create a topological order V ′ from PIs to POs.
4 for u ∈ V ′ do
5 for e ∈ Eo(u) do
6 w = 1 + (|et| > 1 ? 1 : 0)
7 for v ∈ et do
8 if lbu + w > lbv then
9 lbv = lbu + w

10 m = max (m, lbv)

11 for o ∈ O do
12 lbo = m

13 return lb

the lower boundary lbv of node v (line 9), i.e., lbv = lbu+w.
Meanwhile, the current maximum logic level lower boundary
m is recorded (line 10). Furthermore, given that all POs are
aligned at the last level, their logic level lower boundaries are
uniformly set to m (lines 11-12).

B. Splitter Tree Constraints

For the construction of the ILP model, the constraint ad-
dressing fan-out limitation as presented as Equation (11) is
pretty complex, and its scale exhibits an exponential growth
with respect to the number of fan-outs. This significantly
extends the construction time of the ILP model, especially for
circuits containing nets with large fan-outs. The complexity of
this constraint stems from the exhaustive enumeration of all
possible combinations for the sink set. Consequently, efforts
are directed toward mitigating the enumeration burden by
reducing the number of subsets enumerated while upholding
the effectiveness of the constraint.

Given that the similarity in the delay can impact the depth of
leaves in the final splitter tree, we propose a strategy where the
fan-out limitation constraint works on the subsets composed
of sinks with similar delays instead of all subsets. Notably,
this strategy can directly benefit from the logic level lower
boundary calculated in the previous subsection. Specifically,
for an over-2-pin net e, its sinks et are first rearranged in terms
of their logic level lower boundaries. Subsequently, a sliding
window of size n is used to select the sink subset. This window
moves on re-ordered sinks from left to right with a step size
of 1, where each movement selects n sinks within the window
as a subset, and then this subset will be subject to the fan-out
limitation constraint detailed in Equation (11). Fig. 10 shows
an example of sliding window movement. In this way, under
the given window size n, only |et|−n+1 subsets are chosen,
and the number of constraints for each subset is also constant,
meaning the constraint complexity is reduced from exponential
to linear. The selection of the window size involves a trade-off
between effectiveness and efficiency. That is because a larger

I

1 2 2Delay 3 4 5 7

g1 g2 g3 g4 g5 g6 g7

Fig. 10: A sliding window of size 3 is applied to an ordered
(7 + 1)-pin net for the fan-out limitation constraint construc-
tion, where this window can move four times from left to right,
and each movement contains three sinks.

window size can accommodate more sinks, thereby enhancing
the constraints between sinks, while the constraint complexity
of the subset chosen by the window grows exponentially with
the window size.

C. Objective Function Optimization

Upon the implementation of the two optimization strategies
previously proposed, a notable acceleration in the construction
and solution of the proposed ILP model can be observed, up
to 417 times evidenced in TABLE II. In addition, an extra
novel strategy is introduced to further decrease the number of
inserted buffers and splitters. Within the original ILP model,
the objective in Equation (6) aims to estimate the total number
of inserted buffers and splitters. After the simplification, the
final objective in Equation (7) actually transforms into the sum
of the average delays of all nets. This streamlined formulation,
while straightforward, has demonstrated superior outcomes
compared to the methods from ICCAD’21 [9] and DAC’22
[10], with an average reduction of 12.61% and 4.8% on the
number of inserted buffers and splitters, as evidenced in the
“ASPDAC’23 [13]” part of TABLE II.

Nevertheless, this objective primarily concentrates on the
number of inserted buffers and splitters and neglects the circuit
depth. Hence, a novel objective is devised, which represents
the weighted aggregation of the sum of all nets’ average delays
and the circuit depth, formulated as

α

|E|
∗
∑
e∈E

(
1

|et|
∗
∑
v∈et

L(v)− L(es)

)
+

(1− α)

|O|
∗
∑
o∈O

L(o).

(16)
The weight α ∈ [0, 1] represents the contribution to the
sum of all nets’ average delays. Increased complexity in
constructing splitter trees is observed with higher maximum
fan-out numbers in a circuit. Consequently, a higher value of
α is recommended in such cases, whereas a lower value of α
is preferred otherwise.

VI. EXPERIMENTAL RESULTS

The proposed global optimization framework for buffer and
splitter insertion of AQFP logic has been implemented using
the C++-17 language. The experiments were conducted on the
machine with Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
and 256.0 GB memory running Ubuntu 22.04. The Gurobi [23]
was chosen as the integer linear programming solver due to
its notable performance. This paper selected two categories

10

TABLE II: The experimental results on the ISCAS’85 and simple arithmetic benchmarks.

Testcase
Original Circuit ICCAD’21 [9] DAC’22 [10] ASPDAC’23 [13] Ours

Gates Depth MFO BS JJs Depth T(s) BS JJs Depth T(s) BS JJs Depth T(s) BS JJs Depth T(s)

adder1 7 4 2 16 74 8 0.15 16 74 8 0.01 16 74 8 0.02 16 74 8 0.03
adder8 77 17 3 404 1270 33 0.08 371 1204 33 0.01 371 1204 33 0.03 371 1204 33 0.03
alu32 1513 100 128 15244 39566 171 17.39 14742 38562 173 0.48 13976 37030 169 1792.05 13991 37060 169 2.16

multiplier8 439 35 9 1907 6448 70 0.21 1861 6356 71 0.04 1681 5996 70 0.18 1681 5996 70 0.16
counter16 29 9 4 99 372 17 0.05 65 304 17 0.01 66 306 17 0.02 65 304 17 0.02
counter32 82 13 4 201 894 23 0.04 155 802 23 0.01 156 804 23 0.03 155 802 23 0.03
counter64 195 17 4 412 1994 30 0.05 352 1874 30 0.02 351 1872 30 0.04 349 1868 30 0.04
counter128 428 22 4 836 4240 38 0.10 760 4088 38 0.04 755 4078 38 0.05 751 4070 38 0.05

c17 6 3 2 17 70 5 0.05 12 60 5 0.01 12 60 5 0.02 12 60 5 0.02
c432 121 26 10 889 2504 37 0.07 886 2498 39 0.01 829 2384 37 0.16 843 2412 37 0.04
c499 387 18 8 1238 4798 29 0.11 1270 4862 31 0.03 1173 4668 29 0.07 1173 4668 29 0.06
c880 306 27 9 1702 5240 40 0.11 1665 5166 41 0.03 1536 4908 40 0.07 1536 4908 40 0.06

c1355 389 18 9 1240 4814 29 0.11 1271 4876 31 0.03 1186 4706 29 0.07 1186 4706 29 0.06
c1908 289 21 14 1405 4544 35 0.12 1344 4422 37 0.03 1253 4240 34 0.13 1246 4226 34 0.06
c2670 368 21 32 2014 6240 28 0.24 2092 6392 30 0.04 1869 5954 28 816.85 1876 5964 28 0.68
c3540 794 32 38 3419 11606 53 0.63 2281 9326 56 0.18 1961 8690 52 225.85 1964 8696 52 0.60
c5315 1302 26 41 6016 19922 40 1.08 5989 19790 42 0.46 5485 18860 40 869.07 5531 18952 40 0.64
c6288 1870 89 17 9476 30172 179 2.62 9016 29252 180 0.64 8832 28884 179 275.80 8832 28884 179 3.41
c7552 1394 33 170 8090 24560 58 15.81 8598 25560 66 0.43 6756 21892 58 9421.72 6740 21860 58 1.93

sorter32 480 15 2 510 3900 30 0.12 480 3840 30 0.04 480 3840 30 0.05 480 3840 30 0.05
sorter48 880 20 3 915 7110 35 0.17 880 7040 35 0.11 896 7072 35 0.09 880 7040 35 0.07

Ave. ratio 1.17 1.08 1.00 2.51 1.06 1.03 1.03 0.48 1.00 1.00 1.00 417.01 1 1 1 1

for the benchmark circuits. The first category includes smaller
circuits from the ISCAS’85 and simple arithmetic benchmark
[11], while the second category comprises larger circuits from
the EPFL benchmark [12]. Furthermore, all benchmark circuits
used in this paper are composed of buffers with 2 JJs, splitters
with 2 JJs, 3-input majority gates with 6 JJs, 2-input AND
with 6 JJs, and 2-input OR with 6 JJs. For consistency in
comparison with the baselines, the maximum fan-out of the
splitter is set to 4. Additionally, the size of the sliding window
is set to 8.

To ensure more precise experimental results, several mod-
ifications were applied to the benchmark circuits. Given the
interchangeability of buffers and inverters in AQFP logic, the
inverter connected to the output port of logic gates can be
transferred to their input ports. For instance, M(x, y, z) =
M(x, y, z) for an MAJ gate, x& y = x | y for an AND
gate, and x | y = x& y for an OR gate. Moreover, if a PI
is directly connected to a PO through an inverter, this inverter
can be retained. The number of logic gates (Gates), original
circuit depth (Depth), and the maximum fan-out (MFO) for
all benchmark circuits are summarized in the “Original
Circuit” part of TABLEs II and III.

This paper adopted the buffer and splitter insertion methods
from ICCAD’21 [9], DAC’22 [10], and ASPDAC’23 [13]
as the baselines, where the method from ASPDAC’23 is
our proposed framework without optimizations. The evalua-
tion metrics considered the number of inserted buffers and
splitters, as well as the circuit depth. Additionally, to ensure
the consistency of all experimental methods concerning path-
balancing and fan-out handling for all PIs and POs of the
circuit, the buffers and splitters are inserted into the PIs and

POs of the circuit such that all PIs have a logic level of 0, all
interconnecting nets have a fan-out of 1, and all POs maintain
the same logic level.

TABLE II shows the experimental results on the ISCAS’85
and simple arithmetic benchmarks [11]. “BS” denotes the
number of inserted buffers and splitters; “JJs” denotes the total
number of JJs in the circuit; “Depth” denotes the circuit depth;
while “T(s)” denotes the runtime in seconds. Comparative
analysis with the method proposed in ICCAD’21 reveals that
our proposed framework achieves an average reduction of
12.71% and 6.94% in the number of inserted buffers and split-
ters and the total JJs, respectively, while exhibiting a 36.07%
decrease in runtime. When compared with the heuristic method
from DAC’22, our proposed framework achieves an average
reduction of 5.07% in the number of inserted buffers and
splitters and 3.05% in the total JJs, with a comparable runtime.
As for the method from ASPDAC’23, our framework demon-
strates a speed improvement of 417.01 times compared to it,
while reducing the number of inserted buffers and splitters
by 0.13% on average. This finding further highlights the run-
time drawback of the ILP-based method before optimization.
Moreover, our proposed framework consistently yields circuit
designs with smaller or equal circuit depths compared with the
baseline methods. Notably, our proposed framework exhibits
notable advantages over the baseline methods, particularly in
circuits with substantial fan-outs. For instance, in the case
of the c7552 circuit with a maximum fan-out of 170, our
framework realizes significant improvements in the number of
inserted buffers and splitters compared with ICCAD’21 and
DAC’22, achieving reductions of up to 16.69% and 21.61%,
respectively.

11

TABLE III: The experimental results on larger-scale circuits from the EPFL benchmark.

Testcase
Original Circuit ICCAD’21 [9] DAC’22 [10] Ours

Gates Depth MFO BS JJs Depth BS JJs Depth BS JJs Depth

div 57247 4372 370 3660404 7664410 8618 3117173 6577828 8703 2785942 5915486 8601
hyp 214335 24801 255 N/A 13912571 29111152 41464 12642718 26571446 41292
log2 32060 444 253 268569 729498 779 188374 569108 788 158122 508604 773

multiplier128 27062 274 145 315282 792936 529 134413 431198 531 121620 405612 526
sin 5416 225 84 34185 100866 354 29140 90776 360 25999 84494 352
sqrt 24618 5058 126 1761312 3670332 8224 1453718 3055144 8288 1416653 2981014 8199

square 18484 250 75 125312 361528 412 102638 316180 414 97268 305440 409

Ave. ratio 1.58 1.38 1.01 1.10 1.07 1.01 1 1 1
* N/A means that the method exceeds the memory limit when running on the configured machine.
* Ave. ratio does not include the N/A items.

div log2
multiplier128 sin sqrt square

102

103

104

105

12.36

9.51

7.27

4.2

9.65

4.33

8.97

7

5.98

2.63

5.86

5.01

7.7

6.21

4.74

3.32

6.27

3.5

R
un

tim
e

(l
og

sc
al

e)

ICCAD’21[9] DAC’22[10] TCAD

Fig. 11: The runtime comparison on the larger-scale circuits
from the EPFL benchmark in seconds, with the ordinate
recording the log scale of the runtime.

In order to demonstrate the scalability of our proposed
framework, large circuits sourced from the EPFL benchmark
are employed for evaluation purposes, whose results are
shown in TABLE III. It is noteworthy that our framework
attains significant effectiveness while maintaining high ef-
ficiency. Specifically, our proposed framework achieves an
average reduction of 32.06% and 9.13% in the number of
inserted buffers and splitters, simultaneously with smaller
circuit depths, compared with ICCAD’21 and DAC’22, re-
spectively. Moreover, our proposed framework also has 29.98
and 2.52 times the speed of these two baselines, respectively,
as shown in Fig. 11. Additionally, the method presented in
ASPDAC’23 exceeds the memory limit of the configured
machine, thereby preventing any feasible solution for these
benchmark circuits under the configured machine. This finding
further highlights the memory drawback of the ILP-based
method before optimization. In the case of the hyp circuit,
the method from ICCAD’22 also fails to provide a solution
on the configured machine, while our proposed framework
can quickly generate a high-quality solution. Compared with
the method from DAC’22, our solution requires 9.13% fewer
buffers and splitters and only costs about one-third of its
runtime.

VII. CONCLUSION

This paper introduced the buffer and splitter insertion prob-
lem of AQFP circuits. It first illustrated the importance of
buffer and splitter insertion for AQFP circuit design in meeting
the path-balancing requirement and fan-out limitation. Then,
a global optimization framework was proposed to minimize
the number of inserted buffers and splitters while legalizing
AQFP circuits. This framework divided the buffer and splitter
insertion process into three phases, including logic level as-
signment, splitter tree generation, and buffer insertion. Firstly,
an integer linear programming model was built to assign the
logic level of each logic gate so that the delay of all nets
can be determined. Then, an optimal splitter tree could be
generated for each net using the optimal multi-way search
tree method based on dynamic programming. Finally, the logic
level of all logic gates was updated, and buffers were inserted
into all nets to achieve path balance. Furthermore, three opti-
mization strategies were introduced to enhance the proposed
framework’s effectiveness and efficiency. Experimental results
on benchmark circuits demonstrated the effectiveness and
efficiency of the proposed framework, outperforming state-of-
the-art methods in terms of the number of inserted buffers and
splitters, circuit depth, and runtime, particularly on large cir-
cuits. Specifically, on large circuits from the EPFL benchmark,
the proposed method reduced the number of inserted buffers
and splitters by an average of 32.06% and 9.13%, and the
runtime by an average of 83.20% and 27.04%, respectively,
compared with the methods in ICCAD’21 and DAC’22.

Furthermore, from the perspective of the whole design flow
for AQFP circuits, the insertion of buffers is imperative not
solely during the logic synthesis phase but also throughout
the physical design phase [24], [25]. Additionally, buffers
inserted in both stages are to meet the delay requirement
of the AQFP circuit design. Therefore, the integration of
these two stages may be beneficial in minimizing the number
of inserted buffers, the circuit latency, and even the energy
consumption. In addition, the derivative technologies of AQFP
logic, especially reversible quantum-flux-parametron (RQFP)
[26], have also attracted much attention. RQFP is implemented
by three AQFP splitters and AQFP majority gates. Hence,
buffer and splitter insertion is also required in RQFP logic
circuit design [27], [28] to meet its design constraints.

12

REFERENCES

[1] D. S. Holmes, A. L. Ripple, and M. A. Manheimer, “Energy-efficient
superconducting computing—power budgets and requirements,” IEEE
Transactions on Applied Superconductivity (TASC), vol. 23, no. 3, pp.
1 701 610–1 701 610, 2013.

[2] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic
quantum flux parametron as an ultra-low-power logic device,” Supercon-
ductor Science and Technology, vol. 26, no. 3, p. 035010, 2013.

[3] K. Loe and E. Goto, “Analysis of flux input and output josephson pair
device,” IEEE Transactions on Magnetics (TMAG), vol. 21, no. 2, pp.
884–887, 1985.

[4] M. Hosoya, W. Hioe, J. Casas, R. Kamikawai, Y. Harada, Y. Wada,
H. Nakane, R. Suda, and E. Goto, “Quantum flux parametron: a single
quantum flux device for josephson supercomputer,” IEEE Transactions
on Applied Superconductivity (TASC), vol. 1, no. 2, pp. 77–89, 1991.

[5] N. Takeuchi, T. Yamae, C. L. Ayala, H. Suzuki, and N. Yoshikawa, “An
adiabatic superconductor 8-bit adder with 24kbt energy dissipation per
junction,” Applied Physics Letters, vol. 114, no. 4, p. 042602, 2019.

[6] C. L. Ayala, R. Saito, T. Tanaka, O. Chen, N. Takeuchi, Y. He, and
N. Yoshikawa, “A semi-custom design methodology and environment
for implementing superconductor adiabatic quantum-flux-parametron
microprocessors,” Superconductor Science and Technology, vol. 33,
no. 5, p. 054006, 2020.

[7] R. Cai, O. Chen, A. Ren, N. Liu, N. Yoshikawa, and Y. Wang, “A
buffer and splitter insertion framework for adiabatic quantum-flux-
parametron superconducting circuits,” in IEEE International Conference
on Computer Design (ICCD), 2019, pp. 429–436.

[8] S.-Y. Lee, H. Riener, and G. De Micheli, “Irredundant buffer and splitter
insertion and scheduling-based optimization for AQFP circuits,” 2021.

[9] C.-Y. Huang, Y.-C. Chang, M.-J. Tsai, and T.-Y. Ho, “An opti-
mal algorithm for splitter and buffer insertion in adiabatic quantum-
flux-parametron circuits,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2021, pp. 1–8.

[10] S.-Y. Lee, H. Riener, and G. De Micheli, “Beyond local optimality of
buffer and splitter insertion for AQFP circuits,” in ACM/IEEE Design
Automation Conference (DAC), 2022, pp. 445–450.

[11] ISCAS’85 and simple arithmetic benchmarks. [Online]. Available:
https://github.com/lsils/SCE-benchmarks/tree/main/ISCAS

[12] L. Amarù, P.-E. Gaillardon, and G. De Micheli, “The EPFL combina-
tional benchmark suite,” in IEEE/ACM International Workshop on Logic
Synthesis (IWLS), 2015.

[13] R. Fu, M. Wang, Y. Kan, N. Yoshikawa, T.-Y. Ho, and O. Chen, “A
global optimization algorithm for buffer and splitter insertion in adiabatic
quantum-flux-parametron circuits,” in IEEE/ACM Asia and South Pacific
Design Automation Conference (ASPDAC), 2023, pp. 769–774.

[14] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Energy efficiency of
adiabatic superconductor logic,” Superconductor Science and Technol-
ogy, vol. 28, no. 1, p. 015003, 2014.

[15] N. Takeuchi, S. Nagasawa, F. China, T. Ando, M. Hidaka, Y. Ya-
manashi, and N. Yoshikawa, “Adiabatic quantum-flux-parametron cell
library designed using a 10 kA cm−2 niobium fabrication process,”
Superconductor Science and Technology, vol. 30, no. 3, p. 035002, 2017.

[16] Q. Xu, C. L. Ayala, N. Takeuchi, Y. Yamanashi, and N. Yoshikawa,
“HDL-based modeling approach for digital simulation of adiabatic
quantum flux parametron logic,” IEEE Transactions on Applied Super-
conductivity (TASC), vol. 26, no. 8, pp. 1–5, 2016.

[17] Q. Xu, C. L. Ayala, N. Takeuchi, Y. Murai, Y. Yamanashi, and
N. Yoshikawa, “Synthesis flow for cell-based adiabatic quantum-flux-
parametron structural circuit generation with HDL back-end verifica-
tion,” IEEE Transactions on Applied Superconductivity (TASC), vol. 27,
no. 4, pp. 1–5, 2017.

[18] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.
[19] E. Testa, S.-Y. Lee, H. Riener, and G. De Micheli, “Algebraic and

boolean optimization methods for AQFP superconducting circuits,”
in IEEE/ACM Asia and South Pacific Design Automation Conference
(ASPDAC), 2021, pp. 779–785.

[20] G. Meuli, V. Possani, R. Singh, S.-Y. Lee, A. T. Calvino, D. S.
Marakkalage, P. Vuillod, L. Amaru, S. Chase, J. Kawa, and
G. De Micheli, “Majority-based design flow for AQFP superconducting
family,” in IEEE/ACM Proceedings Design, Automation and Test in
Eurpoe (DATE), 2022, pp. 34–39.

[21] R. Fu, J. Huang, M. Wang, Y. Nobuyuki, B. Yu, T.-Y. Ho, and O. Chen,
“BOMIG: A majority logic synthesis framework for aqfp logic,” in
IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE),
2023, pp. 1–2.

[22] L. Gotlieb, “Optimal multi-way search trees,” SIAM Journal on Com-
puting (SICOMP), vol. 10, no. 3, pp. 422–433, 1981.

[23] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2024. [Online]. Available: https://www.gurobi.com

[24] Y.-C. Chang, H. Li, O. Chenht, Y. Wang, N. Yoshikawa, and T.-Y.
Ho, “ASAP: an analytical strategy for AQFP placement,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2020.

[25] R. Fu, O. Chen, B. Yu, N. Yoshikawa, and T.-Y. Ho, “DLPlace: A
delay-line clocking-based placement framework for AQFP circuits,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2023, pp. 1–8.

[26] N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, “Reversible logic gate
using adiabatic superconducting devices,” Scientific Reports, vol. 4, p.
6354, 2014.

[27] R. Fu, O. Chen, N. Yoshikawa, and T.-Y. Ho, “Exact logic synthesis for
reversible quantum-flux-parametron logic,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2023, pp. 1–9.

[28] R. Fu, R. Wille, and T.-Y. Ho, “RCGP: An automatic synthesis
framework for reversible quantum-flux-parametron logic circuits based
on efficient cartesian genetic programming,” in ACM/IEEE Design
Automation Conference (DAC), 2024.

Rongliang Fu received his BS degree in software
engineering from the Northwestern Polytechnical
University, Xi’an, China, in 2018 and his MS degree
in computer science and technology from the Uni-
versity of Chinese Academy of Sciences, Beijing,
China, in 2021. He is currently studying for his Ph.D
degree in the Department of Computer Science and
Engineering, The Chinese University of Hong Kong.
His research interests include electronic design au-
tomation and computer architecture.

Mengmeng Wang received her BS degree in com-
munication engineering from Chongqing University,
Chongqing, China, in 2016 and her MS degree in
electrical and computer engineering from Yokohama
National University, Yokohama, Japan, in 2024. Her
research interests include superconducting electron-
ics and approximate computing.

Yirong Kan received the B.E. degree from the
Chengdu University of Technology, Chengdu, China,
in 2015, the M.E. degree from Yunnan University,
Kunming, China, in 2019, and the Ph.D. degree from
the Nara Institute of Science and Technology, Ikoma,
Japan, in 2022. He has been an Assistant Profes-
sor with the Division of Information Science, Nara
Institute of Science and Technology since 2022.
His current research interests include reconfigurable
computing, computer architecture, digital IC design,
and emerging computing technologies.

Olivia Chen is an associate professor in the De-
partment of Advanced Information Technology at
Kyushu University, Japan, where she is also a dis-
tinguished researcher within the JST PRESTO and
FOREST program. She earned her PhD degree in
ECE from Yokohama National University, Japan, in
2017. Her research is focused on cutting-edge top-
ics, including superconducting electronics, energy-
efficient computing, approximate computing, deep
learning hardware accelerators, and design automa-
tion for superconducting VLSI implementation. Her

research findings have been published in major applied superconductivity jour-
nals, such as IEEE TAS and SUST, and presented at top tier Architecture/EDA
conferences including ISCA, MICRO, DAC, DATE, ICCD, and ICCAD.

13

https://github.com/lsils/SCE-benchmarks/tree/main/ISCAS
https://yosyshq.net/yosys/
https://www.gurobi.com

Nobuyuki Yoshikawa (F’24) is a professor at the
Institute of Advanced Sciences (IAS) at Yokohama
National University (YNU), where he leads the
superconductivity electronics group. He earned his
Ph.D. in Electrical and Computer Engineering (ECE)
from YNU in 1989 and has since been affiliated
with YNU’s ECE Department. His research pri-
marily centers on superconductive devices and their
integration into digital and analog circuits. Presently,
his focus is on developing highly energy-efficient
superconducting digital circuits, particularly those

that employ Adiabatic Quantum-Flux Parametron (AQFP) and Single Flux
Quantum (SFQ) logic, with an aim towards high-performance computing
applications. In 2023, he was honored with the IEEE Council on Supercon-
ductivity (CSC) Award for Continuing and Significant Contributions in the
field of Applied Superconductivity. He is also a Fellow of the IEEE.

Bei Yu (M’15-SM’22) received the Ph.D. degree
from The University of Texas at Austin in 2014.
He is currently an Associate Professor in the De-
partment of Computer Science and Engineering, The
Chinese University of Hong Kong. He has served
as TPC Chair of ACM/IEEE Workshop on Machine
Learning for CAD, and in many journal editorial
boards and conference committees. He received ten
Best Paper Awards from IEEE TSM 2022, DATE
2022, ICCAD 2021 & 2013, ASPDAC 2021 & 2012,
ICTAI 2019, Integration, the VLSI Journal in 2018,

ISPD 2017, SPIE Advanced Lithography Conference 2016, and many other
awards, including DAC Under-40 Innovator Award (2024), IEEE CEDA
Ernest S. Kuh Early Career Award (2022), and Hong Kong RGC Research
Fellowship Scheme (RFS) Award (2024).

Tsung-Yi Ho (F’24) is a Professor in the Depart-
ment of Computer Science and Engineering, The
Chinese University of Hong Kong (CUHK). He
received his Ph.D. in Electrical Engineering from
National Taiwan University in 2005. His research
interests include several areas of computing and
emerging technologies, especially in the design au-
tomation of microfluidic biochips. He was a recipient
of the Best Paper Award at the IEEE Transactions
on Computer-Aided Design of Integrated Circuits
and Systems in 2015. Currently, he serves as the

VP Conferences of IEEE CEDA, and the Executive Committee of ASP-DAC
and ICCAD. He is a Distinguished Member of ACM and a Fellow of IEEE.

14

