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Abstract—Reversible computing, deriving its inspiration from
Landauer’s principle, has captured significant interest as a
promising technology for logic operations without energy dissi-
pation. The reversible quantum-flux-parametron (RQFP) stands
as the first practical reversible logic gate using adiabatic su-
perconducting devices, whose logical and physical reversibility
has been experimentally demonstrated. However, due to its
unique logic function and structure, the design of RQFP logic
circuits is a highly challenging task. At present, there are no
automated design tools available for RQFP logic. Therefore,
this paper proposes the first exact logic synthesis algorithm for
RQFP logic. It formulates the synthesis problem as the Boolean
satisfiability problem and subsequently constructs and calls upon
the incremental propositional logic model iteratively for optimal
synthesis with the least number of gates and garbage outputs.
Experimental results on the reversible logic benchmark from
RevLib demonstrate the effectiveness of the proposed algorithm.

Index Terms—reversible computing, superconductor logic,
RQFP, exact logic synthesis

I. INTRODUCTION

The ongoing downscaling of field-effect transistors has
been a primary driving force behind the enhancement in the
performance and energy efficiency of microprocessors for
several decades. Nonetheless, due to technological and fun-
damental limitations for non-adiabatic complementary metal-
oxide-semiconductor (CMOS) logic [1], [2], it is impractical
to attain smaller switching energy through device miniatur-
ization, which has stimulated the development of beyond-
CMOS energy-efficient alternative computing systems. Lan-
dauer stated in 1961 [3] that the minimum energy dissipation
to erase one bit of information is kBT ln 2, where kB is the
Boltzmann constant and T is the temperature of the system.
Furthermore, Bennett showed in 1973 [4] that there is no
energy dissipation for logic operations without the reduction in
information entropy under ideal physical circumstances. Sub-
sequently, reversible computing [5], [6] has gained attention
as a prospective solution for energy dissipation. Especially in
quantum computing, reversible computing can play a vital role
due to the inherent reversibility of quantum operations.

However, the physical implementation of reversible com-
puting presents a formidable undertaking, as it necessitates
both logical and physical reversibility, as well as ultra-low
power logic devices. The reversible quantum-flux-parametron

(RQFP) proposed in 2014 [7], [8] is the first practical re-
versible logic gate using adiabatic superconducting devices,
with its logical and physical reversibility being validated
through experimental demonstrations. The RQFP logic gate
is realized using adiabatic quantum-flux-parametron (AQFP)
logic [9] based on superconductor technology. This logic gate
can execute logical operations with significantly low energy
dissipation, possibly even below kBT ln 2. Besides, Yamae
et al. [10] used RQFP logic gates to design and fabricate
a reversible full adder, further revealing the reversibility and
feasibility of RQFP logic circuits. Hence, RQFP logic has
drawn great attention from researchers [11], [12].

However, the lack of automated design tools has resulted
in the limited availability of RQFP-based reversible logic
circuit designs [11]. Conventional reversible logic circuit
designs primarily realize reversible Boolean functions rely-
ing on basic Toffoli [5] and Fredkin [6] gates, as well as
their extensions commonly known as multiple-control Toffoli
(MCT) and multiple-control Fredkin (MCF) gate libraries.
As shown in Fig. 1, these two kinds of reversible logic
gates can be viewed as multi-controlled NOT and multi-
controlled SWAP gates, respectively. Their output functions
mainly focus on the last one or two output ports. In contrast,
the normal RQFP logic gate shown in Fig. 2(a) consists of
three AQFP splitter gates and three AQFP majority gates.
Its function can be represented by the equation R(a, b, c) =
(M(a, b, c),M(a, b, c),M(a, b, c)) = (x, y, z), where a, b,
and c are three inputs, x, y, and z are three outputs, and
M(·) represents the majority function, such as the three-
input majority function is M(a, b, c) = ab + ac + bc. Given
that RQFP logic is realized through AQFP logic, both share
the same fan-out limitation and path-balancing requirement
[13]–[15]. As a result, the logic synthesis methods used for
conventional reversible logic are not applicable to RQFP logic
due to its distinctive logic function and structure. Therefore,
the research on the logic synthesis method of RQFP logic is
of crucial significance.

Since the number of gates and garbage outputs can cause
significant energy dissipation in RQFP logic, the need for
RQFP logic circuit design is up to or near the optimum of these
two metrics. To guarantee optimality, this paper formulates
the logic synthesis problem of RQFP logic as the Boolean
satisfiability problem and proposes the first exact logic syn-
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Fig. 1. Functional schematics of (a) MCT gate and (b) MCF gate, where
symbols utilized are · for logical product, + for logical sum, and − for
logical negation.

thesis algorithm for RQFP logic. The algorithm leverages
the inherent characteristics of AQFP logic, and first redefines
the logic function of RQFP logic gates. Subsequently, the
algorithm can incrementally construct the proposition logic
model by increasing the number of RQFP logic gates. After
obtaining the first feasible solution, it iteratively checks the
model by reducing the number of garbage outputs, thereby
achieving optimal synthesis with the least number of gates
and garbage outputs. Finally, the proposed RQFP buffers are
inserted into the synthesis result to satisfy the path-balancing
requirement, thereby generating the RQFP logic circuit.

In summary, this paper makes the following contributions:
• This paper proposes the first exact logic synthesis algo-

rithm to generate RQFP logic circuits for a given number
of gates and garbage outputs.

• The proposed algorithm employs an incremental encod-
ing approach to construct the model targeting minimizing
the number of gates and garbage outputs.

• Furthermore, a simplification of the propositional logic
model is proposed along with four optimization strategies
to break the structural and functional symmetries and
thereby reduce solving time.

• Experimental results on the reversible logic benchmarks
provided at RevLib [16] demonstrate the effectiveness of
the proposed algorithm.

II. PRELIMINARIES

A. Reversible Quantum-Flux-Parametron

The RQFP logic gate, a type of superconductor logic gate,
is both logically and physically reversible [8]. As shown in
Fig. 2(a), it consists of six symmetrically interconnected AQFP
logic gates, with three of them labeled A, B, and C operating
as three-output splitter gates, and the remaining three labeled
as X, Y, and Z operating as three-input majority gates. Ix1
and Ix2 are the excitation currents for the splitter gates and
majority gates, respectively. When excitation currents arrive,
the Josephson junction (JJ) in the AQFP logic gate switches,
and then the inductor generates the output current. Fig. 2(b)
describes the truth table of the RQFP logic gate, where the
values ‘1’ and ‘0’ represent logic true and false, respectively.
The input and output of the RQFP logic gate exhibit a one-
to-one correspondence, which unambiguously demonstrates its
logical reversibility [7].
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Fig. 2. (a) and (b) show the structure schematic and the truth table of the
normal RQFP logic gate, respectively, where AC currents Ix1 and Ix2 are
clock signals, and the circles represent the inverters.

In a normal RQFP logic gate, each of its outputs serves the
function of a majority function. This attribute confers upon
RQFP logic a more compact logic representation compared
to the AND-inverter graph (AIG) and majority-inverter graph
(MIG). However, since RQFP logic is implemented using
AQFP logic gates, it must adhere to the inherent constraints
of AQFP logic, including the fan-out limitation and path-
balancing requirement [13]–[15]. Specifically, each output of
each AQFP logic gate can only drive one successor, and
all inputs to each gate must possess the same clock phases.
Consequently, RQFP logic circuits must also satisfy these
requirements to ensure proper functioning. Meanwhile, the
inverter setting for normal RQFP logic gates remains fixed,
that is, there is an inverter in front of each majority gate, and its
position is firmly established. Since inverters can be integrated
into any input of each AQFP majority gate, the functionality
of RQFP logic gates can be extended. That is, each output of
an RQFP logic gate can have eight function choices, includ-
ing M(a, b, c), M(a, b, c), M(a, b, c), M(a, b, c), M(a, b, c),
M(a, b, c), M(a, b, c), and M(a, b, c).

1) RQFP Buffer: To fulfill the path-balancing requirement,
the insertion of buffers into RQFP logic circuits becomes nec-
essary. One approach is to utilize the combination of an RQFP
logic gate and constant inputs to generate the RQFP buffer. For
instance, R(a, 0, 1) = (M(a, 0, 1),M(a, 0, 1),M(a, 0, 1)) =
(a, 1, 0) can achieve the RQFP buffer function while si-
multaneously producing two additional outputs, resulting in
significant cost. In light of the logical and physical reversibility
requirement of reversible computing, two cascaded AQFP
buffers can be employed to construct an RQFP buffer, as
shown in Fig. 3(a). Furthermore, based on the inverter property
of AQFP logic, the RQFP inverter can be constructed as shown
in Fig. 3(b), which can be used to link the primary input and
primary output with complementary logic values.

2) RQFP Splitter: In AQFP logic, the splitter gate can
directly achieve the multiple fan-out., but can not be di-
rectly used in RQFP logic due to its irreversibility. Con-
sidering the reversibility, the RQFP splitter can be realized
by the combination of an RQFP logic gate and constant
inputs. For instance, the 1-to-3 splitter can be realized by
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Fig. 3. Schematics of (a) RQFP buffer, (b) RQFP inverter, and (c) splitter
insertion for RQFP logic. The gate R1 has five fan-outs with three distinct
types of functions. After RQFP splitter insertion, the new gate R2 can afford
the same output function with three fan-outs (orange arrows).

R(0, a, 1) = (M(0, a, 1),M(0, a, 1),M(0, a, 1)) = (a, a, a).
Fig. 3(c) shows an example of splitter insertion in RQFP logic.
The second output port of gate R1 has three fan-outs. An
RQFP logic gate R2 with two constant inputs can be inserted
after it to satisfy the fan-out limitation.

3) RQFP Logic Circuits: RQFP logic gates have been
demonstrated experimentally as effective building blocks for
the design of reversible logic circuits. In general, reversible
logic circuits can implement a reversible Boolean function that
represents a one-to-one mapping between vectors of primary
inputs and primary outputs. To render a nonreversible function
reversible, additional constant inputs and outputs, known as
garbage outputs, must be introduced. However, numerous
garbage outputs can lead to energy waste within the RQFP
logic circuit. Therefore, except for gate cost, the design of
RQFP logic circuits must also take into account the number
of garbage outputs.

B. Exact Logic Synthesis

Exact logic synthesis is a crucial component of digital
circuit design, targeting the generation of a logic circuit that
corresponds functionally to a provided Boolean function while
optimizing certain criteria such as gate count and circuit
depth. Unlike heuristic-based methods, exact logic synthesis
can guarantee the effective realization of an optimal or near-
optimal logic circuit, which reveals its importance in building
libraries of small functions that can be used to construct larger
functions. Take the number of gates as an example. In a
logic circuit with n primary inputs x1, . . . , xn and m primary
outputs o1, . . . , on, m logic functions over n variables are
represented as

(o1 = f1(x1, . . . , xn), . . . , om = fm(x1, . . . , xn)). (1)

The objective of exact logic synthesis is to explore the detailed
implementation of fi, i ∈ [1,m] using given r gates, i.e.,

∀x1, . . . , xn, fi(x1, . . . , xn) ≡
i∈[1,m]

ciri(x1, . . . , xn), (2)

where {ciri, i ∈ [1,m]} are specified by selecting appropriate
gate types and connections. Therefore, the key to exact logic

synthesis becomes how to effectively and efficiently formulate
the types of gates and the connections between gates, primary
inputs, and primary outputs.

As a vital technique in the domain of electronic design
automation, Boolean satisfiability finds extensive application
in modern practical implementations of exact logic synthe-
sis. The Boolean satisfiability (SAT) problem deals with a
propositional logic formula f(x1, . . . , xn) that is constructed
utilizing Boolean variables x1, . . . , xn and logic connectives,
including AND (∧), OR (∨), NOT (−), and Implication
( =⇒ ). SAT aims to verify if an assignment exists for the
variables x1, . . . , xn such that f evaluates to true. If so, f
is considered satisfiable; otherwise, f is unsatisfiable. The
Boolean formula f is commonly represented in conjunctive
normal form (CNF), which is a conjunction of clauses where
a clause is a disjunction of literals, and a literal denotes a
variable in regular or complemented form.

III. METHODOLOGY

The RQFP logic gate has three input ports and three
output ports, each output of which can work as the majority
function. These unique characteristics of RQFP logic create
substantial complexity during the circuit design of RQFP
logic. This section first introduces the SAT-based encoding
for the properties of RQFP logic to implement its exact logic
synthesis. Subsequently, specific optimizations are presented
to break the symmetries to reduce the solving time.

A. SAT Encoding for RQFP Logic

To realize the RQFP logic circuit with m functions
fi(x1, . . . , xn), i ∈ [1,m] and r RQFP logic gates, the
corresponding SAT encoding inspired by Boolean chains [17]
is expressed as follows.

1) Encoding for Variables: First, the Boolean variables
used in the SAT formula are defined as the following:

• oi[t], i ∈ [1,m]: The tth bit of primary output oi in the
truth table.

• x0(0)[t], t ∈ [1, 2n]: Constant true in the truth table. Given
the inverter feature, only constant true is used.

• xi(0)[t], i ∈ [1, n], t ∈ [1, 2n]: The tth bit of primary input
xi in the truth table.

• xi(p)[t], i ∈ [n + 1, n + r], p ∈ [1, 3], t ∈ [1, 2n]: The tth

bit of the pth output port of gate xi in the truth table.
• ci,j(p1),k(p2),l(p3), i ∈ [n+1, n+ r]: Three inputs of gate

xi from left to right: j(p1), k(p2), l(p3), each of which
can be an output port of any gate, constant true, or any
primary input.

• ci,j(p), i ∈ [n+ r + 1, n+ r +m], i > j: Primary output
o(i−n−m) is connected to node xj(p), which can be an
output port of any gate or constant true. Note that direct
connections between primary inputs and primary outputs
are excluded, which can be realized by cascading buffers.

To avoid introducing cycles into the circuit, the constraint
(i > j) ∧ (i > k) ∧ (i > l) is employed for each variable
ci,j(p1),k(p2),l(p3). Moreover, given that the majority function
is insensitive to the order of its inputs, the constraint (i >



l) ∧ ((l > k) ∨ ((l == k) ∧ (p3 > p2))) ∧ ((k > j) ∨ ((k ==
j) ∧ (p2 > p1))) is employed to ensure that three inputs to
gate xi are ordered.

Furthermore, considering the significant number of variables
generated for input connections of each gate, the introduction
of Boolean selection variables ci,j(p), i ∈ [n + 1, n + r], i >
j in place of variables ci,j(p1),k(p2),l(p3) can reduce the total
number of variables from

n+r∑
i=n+1

(
n+ 1 + (i− n− 1) ∗ 3

3

)
(3)

to
n+r∑

i=n+1

(n+ 1 + (i− n− 1) ∗ 3), (4)

while maintaining the same constraints for the entire problem.
However, this reduction comes at the cost of augmented
complexity of clauses, thus posing a trade-off between the
number of variables and the complexity of clauses.

2) Encoding for Gate Functions: The RQFP logic circuit
is designed around the utilization of the RQFP logic gate as
its fundamental logic gate, which has three output ports, each
operating as the majority function. As the output functions of
each RQFP logic gate are primarily regulated by the inverter
configuration that precedes the AQFP majority gates, they
can be encoded through the use of nine Boolean variables
fi(p,j), p ∈ [1, 3], j ∈ [1, 3], where each variable indicates
whether an inverter does not exist in front of the jth input
of the pth majority in gate xi, i ∈ [n + 1, n + r]. Therefore,
the output value xi[p] of the pth output port of gate xi must
satisfy the following constraint(
ci,j(p1) ∧ ci,k(p2) ∧ ci,l(p3)

)
=⇒ ∧

t∈[1,2n]
(

((fi(p,1) ∧ fi(p,2) ∧ fi(p,3)) =⇒ M(xj(p1)[t], xk(p2)[t], xl(p3)[t])⊕ xi[p][t])∧
((fi(p,1) ∧ fi(p,2) ∧ fi(p,3)) =⇒ M(xj(p1)[t], xk(p2)[t], xl(p3)[t])⊕ xi[p][t])∧
((fi(p,1) ∧ fi(p,2) ∧ fi(p,3)) =⇒ M(xj(p1)[t], xk(p2)[t], xl(p3)[t])⊕ xi[p][t])∧
((fi(p,1) ∧ fi(p,2) ∧ fi(p,3)) =⇒ M(xj(p1)[t], xk(p2)[t], xl(p3)[t])⊕ xi[p][t])∧
((fi(p,1) ∧ fi(p,2) ∧ fi(p,3)) =⇒ M(xj(p1)[t], xk(p2)[t], xl(p3)[t])⊕ xi[p][t])∧
((fi(p,1) ∧ fi(p,2) ∧ fi(p,3)) =⇒ M(xj(p1)[t], xk(p2)[t], xl(p3)[t])⊕ xi[p][t])∧
((fi(p,1) ∧ fi(p,2) ∧ fi(p,3)) =⇒ M(xj(p1)[t], xk(p2)[t], xl(p3)[t])⊕ xi[p][t])∧
((fi(p,1) ∧ fi(p,2) ∧ fi(p,3)) =⇒ M(xj(p1)[t], xk(p2)[t], xl(p3)[t])⊕ xi[p][t])).

(5)

Moreover, as illustrated in Section II-A2, an RQFP logic
gate can function as either an RQFP splitter or an RQFP
buffer. In both cases, it necessitates two constant inputs.
Consequently, if an RQFP logic gate xi functions as a splitter
or buffer, it must satisfy the following constraint

ci,0(0) ∧ ci,j(p) ∧
(

∧
(k==j =⇒ q ̸=p)∧k∈[1,i)

ci,k(q)

)
, (6)

where ci,j(p) specifies that xj(p) serves as the source of
multiple fan-outs. This constraint on gate xi is noted as si,j(p).

3) Encoding for Constraints: After creating the requisite
variables to support the propositional logic model, the next
step entails defining the constraints that must be met to ensure
compliance with the desired properties of RQFP logic circuits.

• Circuit function constraints:

∧
i∈[n+r+1,n+r+m]
j∈[n+1,n+r],p∈[1,3]

(
ci,j(p) =⇒ ∧

t∈[1,2n]
o(i−n−r)[t] ⊕ xj(p)[t]

)
,

(7)

which shows that primary output o(i−n−r) is connected
to node xj(p), j ∈ [n+ 1, n+ r].

• Single fan-in constraints:

∧
i∈[n+1,n+r+m]

i−1∑
j=0

ci,j(∗)

 == 1

, (8)

where ci,j(∗) denotes the connections from all output
ports of node xj to node xi.

• Single fan-out constraints:(
∧

j∈[1,n]

((
n+r+m∑
i=n+1

ci,j(0)

)
== 1

))
∧

 ∧
j∈[n+1,n+r]

p∈[1,3]

n+r+m∑
i=j+1

ci,j(p)

 ≤ 1

 ,

(9)

which posits that except for constant true, every primary
input has one and only one fan-out, and each output
port of any logic gate has at most one fan-out. Besides,
according to the fan-in and fan-out constraints of RQFP
logic, the relationship between the fan-out number c of
constant true and the number g of garbage outputs can
be summarized as n + c ≡ m + g. Thus, the fan-out
constraint of constant true is(

n+r+m∑
i=n+1

ci,0(0)

)
== m+ g − n (10)

• Garbage output constraints: ∑
j∈[n+1,n+r]

p∈[1,3]

(
∧

i∈[j+1,n+r+m]
ci,j(p)

) == g, (11)

where g is the given number of garbage outputs. Besides,
since a reversible function has an equivalent number
of primary inputs and primary outputs, the minimum
number of garbage outputs required can be determined
from the relationship g ≥ max (0, n−m).

These constraints identified above require the introduction
of cardinality constraints, which establish the minimum and
maximum number of true clauses within a formula. In certain
instances, such as for the sum constraint where a value to be
equal to or less than one is required, it may be advantageous
to avoid arithmetic computation altogether and instead express
the constraint in a Boolean format, such as through the uti-
lization of ITE encoding and shifter encoding [18]. This paper
uses the “card2bv” command available within the Z3 solver
[19] to accomplish the elimination of cardinality constraints.

B. Exact Logic Synthesis for RQFP Logic

Upon the creation of all essential variables and constraints,
the propositional logic model can be solved to obtain the
values of the variables, which reveal the function of each



Algorithm 1: Exact logic synthesis for RQFP logic.
Input: The number n of primary inputs x1, . . . , xn,

the number m of primary outputs o1, . . . , om,
and the truth table of x1, . . . , xn, o1, . . . , om.

Output: The generated RQFP logic circuit
1 r = ⌈max (n,m)/3.0⌉
2 glb = max (0, n−m)
3 g = −1
4 sol ← Solver()
5 create variables for primary inputs, primary outputs,

constant true, r gates, and connections.
6 create clauses for function constraints.
7 sol.push() // create a snapshot
8 while true do
9 if g < 0 then

10 create clauses for fan-out constraints and
primary outputs’ fan-in constraints.

11 sol.push() // create a snapshot

12 else
13 create clauses for garbage output constraints.

14 if sol.check() == SAT then
15 create RQFP logic circuit cir by sol.model().
16 calculate the garbage number gc of cir.
17 if gc ≤ glb then
18 break
19 else
20 g = gc − 1
21 sol.pop() // remove all clauses added after

the last snapshot

22 else
23 if g ≥ 0 ∧ g ≤ glb then
24 break
25 else if g > 0 then
26 g −= 1
27 sol.pop() // remove all clauses added after

the last snapshot
28 else
29 sol.pop(2) // remove all clauses added after

the penultimate snapshot
30 r += 1 // new a RQFP logic gate
31 create variables for new gate xn+r.
32 create clauses for constraints of xn+r.
33 sol.push() // create a snapshot

34 insert RQFP buffers for cir
35 return cir

gate and the connection relationship between primary inputs,
primary outputs, and gates. Subsequently, the corresponding
RQFP logic circuit can be generated. Algorithm 1 summarizes
the complete flow of exact logic synthesis for RQFP logic.
This algorithm iteratively constructs the propositional logic

model in an incremental manner.
For an input circuit with n primary inputs and m primary

outputs, the initial number of RQFP logic gates, subject to the
single fan-in and single fan-out constraints, can be calculated
as r = ⌈max (n,m)/3.0⌉. To begin with, the number g of
garbage outputs is initialized to −1, indicating that garbage
output constraints are not taken into account until the first
feasible solution is obtained. Next, variables and constraints
are established for r gates based on the initial parameters
(lines 4-7), followed by the iterative process (lines 8-33). In
cases where the first feasible solution is not obtained, fan-
out constraints and primary outputs’ fan-in constraints are
added (lines 9-11). Conversely, garbage output constraints are
introduced (line 13) if a feasible solution has already been
obtained (lines 15-16). After the verification of the model’s
satisfiability, if a feasible solution exists, an RQFP logic circuit
is generated, and the value g is reduced by one to optimize
the garbage outputs (lines 15-21). In the absence of a feasible
solution, if a feasible solution has been previously discovered,
the value g also decreases by one (lines 25-27); Otherwise, a
new RQFP logic gate is introduced (lines 29-33). Ultimately,
the iterative process ends when the value of g is less than or
equal to the specified lower limit glb of garbage outputs (lines
17-18,23-24) under the given number r of RQFP logic gates.

After the generation of the RQFP logic circuit, some RQFP
logic gates may not still conform to the path balancing
requirement. Hence, RQFP buffers presented in Section II-A1
must be inserted to ensure that all inputs to each gate possess
the same clock phases. Fig. 4 shows the buffer insertion result
for the generated 3-8 decoder.

C. Optimizations

All works described above focus on finding a correct solu-
tion. However, since symmetries pervade an extensive search
space [20], many equivalent solutions exist. To mitigate this,
four symmetry-breaking optimization strategies are proposed
to reduce the solving time.

1) Splitter Limitation (SL): As mentioned previously, an
RQFP logic gate requires two constant inputs if it functions
as a splitter. However, the introduction of two constant inputs
gives rise to a significant degree of redundancy. For instance,
R(1, 1, a) = (M(1, 1, a),M(1, 1, a),M(1, 1, a)) = (a, a, a)
and R(1, 1, a) = (M(1, 1, a),M(1, 1, a),M(1, 1, a)) =
(a, a, a) are both capable of representing a 1-to-3 splitter.
Besides, when an RQFP splitter possesses merely one fan-out
or sources from an RQFP logic gate with less than three fan-
outs, it can lead to a substantial increase in the search space.
Hence, the inverter configuration, input choice, and fan-out
limitation of the RQFP splitter need the following constraints.

• Input constraints:

si,j(p) =⇒ ∧
q∈[1,3]∧q ̸=p

(
∨

k=[j+1,n+r+m]
ck,j(q)

)
, (12)

which means that only if the fan-out limitation is violated
can RQFP splitters be applied, i.e., the predecessor RQFP
logic gate xj of each splitter xi must have three outputs.
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Fig. 4. Schematic of the generated RQFP-based 3-to-8 decoder with seven RQFP logic gates and one garbage output after the buffer insertion.

• Function constraints:

si,j(p) =⇒ ∧
q∈[1,3]

(
fi(q,1) ∧ fi(q,2)

)
, (13)

which ensures that none of the outputs of each splitter can
be a constant. Besides, if the qth output port of splitter xi

is not connected to any primary output, its output function
can be further restricted to operate solely as a buffer by

si,j(p) ∧
(

∧
k∈[n+r+1,n+r+m]

ck,i(q)

)
=⇒ fi(q,3). (14)

• Fan-out constraints:

si,j(p) =⇒ ∧
q∈[2,3]

(
∨

k=[i+1,n+r+m]
ck,i(q)

)
, (15)

which ensures that the last two output ports of each
splitter must have a fan-out, meaning that gate xi does
indeed function as a splitter.

2) Order Limitation of Primary Outputs (OLPO): In the
circuit design, the order of primary output is commonly not
fixed, which poses a challenge to exact logic synthesis. For
instance, the circuit only needs to swap these two output ports’
inverter setting if (o1, o2, o3) = R(x1, x2, x3) is replaced
with (o1, o3, o2) = R(x1, x2, x3). To address this issue,
this paper employs a strategy that initially sorts all primary
outputs in terms of the topological order of the circuit before
the construction of the propositional logic model. Then, the
following constraint is imposed on adjacent primary outputs.

∧
i∈[n+r+2,n+r+m]

(
ci,j(p) =⇒ ∨

(k==j =⇒ q<p)
∧k≤j

ci−1,k(q)

)
,

(16)

which ensures that a primary output with a bigger index
possesses a predecessor with a bigger index.

Moreover, there is a tip to further limit the search space, i.e.,
let the last primary output om connected to the last output port
of the last RQFP logic gate xn+r by cn+r+m,(n+r)(3)⊕ true.

3) Fan-in and Fan-out Order Limitation (FIFO): Since
the RQFP logic gate has three input ports and three
output ports, symmetries exist in its fan-ins and fan-
outs. If gate xi is not connected to gate xi+1, they
can be executed in any order, e.g., the circuit re-
mains the same functionality if (x7(1), x7(2), x7(3)) =
R(x4, x5, x6) and (x8(1), x8(2), x8(3)) = R(x1, x2, x3) are
replaced with (x7(1), x7(2), x7(3)) = R(x1, x2, x3) and
(x8(1), x8(2), x8(3)) = R(x4, x5, x6). To address this issue, the
fan-in order of adjacent RQFP logic gates is limited by

(
ci,j(p1) ∧ ci,k(p2) ∧ ci,l(p3)

)
=⇒ ∧

p∈[1,3]

(
∧

t≥max(l,n)∧p∈[1,3]
∧(t==l =⇒ p≥p3)

ci−1,t(p)

)
,

(17)

which ensures that the indexes of all fan-ins of the former
gate must be smaller than the fan-in index of the last output
port of the later gate. Therefore, only the second order in the
aforementioned example is applied due to 3 < 6.

Furthermore, similar to fan-ins of the RQFP logic gate,
fan-outs of the RQFP logic gate also exhibit a comparable
symmetry. Specifically, the three majorities in the RQFP logic
gate have the same inputs, and their functions depend on
the inverter configuration, enabling them to produce the same
function output. Consequently, the output order of these three



xi(p) xi(p) xi(p)xi(p)

majority

Fig. 5. Four unique majority functions considering the inverter transitivity.

output ports can be constrained by the following constraint(
∨

i=[j+1,n+r+m]
ci,j(3)

)
∧(

∨
i=[j+1,n+r+m]

ci,j(1) =⇒ ∨
i=[j+1,n+r+m]

ci,j(2)

)
∧(

∧
i=[j+1,n+r+m]

ci,j(2) =⇒ ∧
i=[j+1,n+r+m]

ci,j(1)

)
,

(18)

which ensures that the first output port of gate xj has a fan-out
only if the second output port of gate xj has a fan-out, and as
soon as the second output port of gate xj has no fan-out, the
first output port of gate xj also has no fan-out. Moreover, to
ensure that each RQFP logic gate is utilized, the last output
port of each RQFP logic gate must have a fan-out.

Apart from whether the output port has fan-out, the succes-
sor order of three output ports of each RQFP logic gate also
needs to constrain by the following constraint

∧
p∈[2,3]

(
∧

i∈[j+1,n+r]

(
ci,j(p) =⇒ ∧

k∈[i+1,n+r]
ck,j(p−1)

))
,

(19)

which ensures that the successor index of the pth output port
of gate xj must be larger than that of the (p − 1)th output
port of gate xj . Note that the primary outputs are not in these
successors since each RQFP logic gate can be connected to a
primary output.

4) Inverter Limitation (IL): Thus far, the optimization
strategies discussed have centered on the topological structure
and connection relationships within the RQFP logic circuit.
In fact, symmetry also exists in the functionality of RQFP
logic gates, as inverters enable these gates to possess flexible
functionality, which increases the complexity of exact logic
synthesis. Each output port of the RQFP logic gate can
generate eight different output functions by configuring the
inverters. Nonetheless, due to the inverter transitivity, these
functions can be condensed into four unique functions, as
shown in Fig. 5. To address this issue, the constraint con-
cerning the inverter configuration is introduced, expressed as

ci,j(p1) ∧ ci,k(p2) ∧ ci,l(p3) ∧
(

∨
t=[i+1,n+r]

ct,i(p)

)
=⇒(

fi(p,1) ∨ fi(p,2) ∨ fi(p,3)
)
∧
(
fi(p,1) ∨ fi(p,2) ∨ fi(p,3)

)
∧(

fi(p,1) ∨ fi(p,2) ∨ fi(p,3)
)
∧
(
fi(p,1) ∨ fi(p,2) ∨ fi(p,3)

)
,
(20)

which applies specifically to the pth output port of RQFP logic
gate xi not connected to any primary outputs.

No opt. +SL +OLPO +FIFO +IL

100

80

60

40

20

96.87

74.0

13.2 12.71 10.41

Optimizations

R
un

tim
e

(s
)

Fig. 6. Variation in the runtime with different optimization methods applied
to the exact logic synthesis for the 2-to-4 decoder, where each method is
cumulatively applied based on all previous ones.

Besides, when an RQFP logic gate xi has the same two in-
puts xj(p1), xk(p2) on the value, i.e., ∧

t∈[1,2n]
xj(p1)[t]⊕xk(p2)[t],

its output function can take two forms. If the inverters cor-
responding to the two inputs are the same, the gate output
depends on these two inputs, in which case another inverter is
useless. Conversely, the gate output depends on another input,
in which case these two inverters are useless. So, the following
constraint concerning the inverter configuration is introduced:

ci,j(p1) ∧ ci,k(p2) ∧ ci,l(p3) ∧
(
∧

t∈[1,2n]
xj(p1)[t] ⊕ xk(p2)[t]

)
=⇒

∧
p∈[1,3]

((
∨

t=[i+1,n+r]
ct,i(p)

)
=⇒ fi(p,3) ∧

(
fi(p,1) =⇒ fi(p,2)

))
.

(21)

Similarly, when an RQFP logic gate xi has the complemen-
tary inputs xj(p1), xk(p2) on the value, the inverters can also
be limited by the following constraint

ci,j(p1) ∧ ci,k(p2) ∧ ci,l(p3) ∧
(
∧

t∈[1,2n]
xj(p1)[t] ⊕ xk(p2)[t]

)
=⇒

∧
p∈[1,3]

((
∨

t=[i+1,n+r]
ct,i(p)

)
=⇒ fi(p,3) ∧

(
fi(p,1) =⇒ fi(p,2)

))
.

(22)

Moreover, when the pth output port of gate xi has no fan-
out, the inverter setting for this port is insensitive, and thus,
there is no inverter for this port set by default, as specified by
the following constraint

∧
t=[i+1,n+r+m]

ct,i(p) =⇒ ∧
j=[1,3]

fi(p,j). (23)

As illustrated in Fig. 6, when all optimization methods are
progressively applied to the exact logic synthesis for the 2-
to-4 decoder, the runtime decreases from 96.87 s without any
optimization applied to 10.41 s with all optimizations applied.
Among them, the effects of SL and OLPO are very significant.

IV. EXPERIMENTAL RESULTS

The proposed exact logic synthesis algorithm for RQFP
logic is achieved by Python, and the Z3 solver [19] is used
to solve the model. After the model construction of each
iteration, the “simplify” tactic is first used to simplify the



TABLE I
EXPERIMENTAL RESULTS OF EXACT LOGIC SYNTHESIS FOR RQFP LOGIC.

Testcase Original Baseline Exact logic synthesis
PI PO glb RQFP Buffer JJ Depth Garbage RQFP Buffer JJ Depth Garbage Speedup ratio

1-bit full adder 3 2 1 15 7 388 5 21 3 2 80 3 2 4.18
4gt10 4 1 3 4 3 108 3 7 3 4 88 3 5 4.93

alu 5 1 4 12 10 328 6 19 4 7 124 4 5 1.07
c17 5 2 3 8 6 216 4 13 5 14 176 5 5 /

decoder 2 4 2 4 0 8 3 204 3 10 3 3 84 3 1 11.50
decoder 3 8 3 8 0 20 10 520 4 23 7 27 276 7 1 /

graycode4 4 4 0 15 7 388 4 21 6 4 160 4 2 /
ham3 3 3 0 17 1 412 4 22 5 5 140 5 1 53.48
mux4 6 1 5 12 12 336 6 20 6 3 156 4 7 /

* ‘/’ represents that the proposed algorithm without optimizations can not find a feasible solution within 240000 seconds.

model by applying simplification rules. Then, the “card2bv”
tactic is used to convert pseudo-Boolean constraints to bit-
vectors, especially for cardinality constraints. Next, the “bit-
blast” tactic is used to reduce bit-vector expressions into
SAT. Finally, the “aig” tactic is used to simplify Boolean
structure using AIG, and the simplified model is solved by the
“sat” tactic, from whose results the corresponding RQFP logic
circuit is obtained. Besides, to ensure the consistency of each
experimental result in terms of processing the path balancing
requirement for primary inputs and primary outputs of the
generated circuit, RQFP buffers are inserted into primary
inputs and primary outputs such that all primary inputs and
all primary outputs are respectively in the same clock stage.

The experiments use the RevLib benchmark circuits [16]
and are executed on the machine with Intel(R) Xeon(R) Gold
6226R CPU @ 2.90GHz, GeForce RTX 3090, and 256.0 GB
memory running Ubuntu 22.04. The glucose-syrup solver is
used to speed up the solving process, which is implemented
by a library named GpuShareSat [21] and uses the GPU
via CUDA to help different CPU threads to share clauses
with each other. After using the “aig” tactic to simplify the
model, the “tseitin-cnf” tactic in the Z3 solver can convert the
model into the CNF using tseitin-like encoding [22]. Finally,
the glucose-syrup solver is applied to solve the CNF, further
obtaining the corresponding RQFP logic circuit. The baseline
is designed by a heuristic method. This method first does MIG-
based logic optimization by the LSOracle [23], a state-of-the-
art logic optimization tool that supports AIG and MIG-based
optimization. Then, it converts each majority node into an
RQFP logic gate. If the fan-out of the majority node exceeds
three, RQFP splitters will be inserted. Finally, it processes the
buffer insertion to meet the path-balancing requirement.

Table I shows the experimental results. The “Original” part
shows the attributes of input circuits, including the number
“PI” of primary inputs, the number “PO” of primary outputs,
and the lower bound “glb” of garbage outputs. The “Baseline”
part shows the results of the baseline method. “RQFP” rep-
resents the number of used RQFP logic gates, and “Buffer”
represents the number of RQFP buffers inserted for the path-
balancing requirement. “JJ” represents the JJ count. Since JJs
are a vital component of AQFP circuits and are used to create
the fluxons that are used for computation, their count can
give an estimate of the complexity and energy efficiency of

a given AQFP circuit, thereby becoming an important metric
of AQFP logic circuits. So, the JJ count can also be used as
a cost metric of RQFP logic circuits realized by AQFP logic.
In current AQFP logic circuits, both buffer and splitter have 2
JJs, and 3-input MAJ has 6 JJs. So, there are 24 JJs per RQFP
logic gate and 4 JJs per RQFP buffer. “Depth” and “Garbage”
represents the circuit depth and the number of garbage outputs
in generated RQFP logic circuits, respectively. The “Exact
logic synthesis” part shows the results of the proposed exact
logic synthesis algorithm for RQFP logic. The “Speedup ratio”
indicates the runtime ratio between the proposed algorithm
without and with optimizations, where the reason why the
speedup of the “alu” circuit is not obvious is that the proposed
algorithm with optimizations finds an extra feasible solution
than one without optimizations. Compared to the baseline,
the proposed algorithm has a significant reduction in the
number of RQFP logic gates, JJ count, and the number of
garbage outputs, specifically by 57.47%, 51.41%, and 76.76%,
respectively. The experimental results show that the proposed
algorithm can generate RQFP logic circuits with a smaller
number of RQFP logic gates and garbage outputs.

V. CONCLUSION

This paper introduced the logic synthesis problem of RQFP
logic, including how to construct RQFP-based buffers and
splitters to address the path-balancing requirement and fan-out
limitation. Meanwhile, this paper first proposed a novel exact
logic synthesis algorithm for RQFP logic, which can generate
the corresponding RQFP logic circuit for an RTL description.
The experimental results on the RevLib benchmark circuits
[16] show the effectiveness of the proposed algorithm, making
the number of garbage outputs close to its lower bound when
the number of RQFP logic gates is the least. Besides, due
to the applicable limitation of exact logic synthesis by the
complexity of Boolean functions, the logic synthesis methods
for larger RQFP logic circuits will be further explored.
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