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Abstract
Reversible computing has gained increasing attention as a prospec-

tive solution for energy dissipation, particularly in quantum com-
puting. As the first practical reversible logic gate using adiabatic
superconducting devices, the reversible quantum-flux-parametron
(RQFP) has been experimentally demonstrated in logical and phys-
ical reversibility. However, the circuit design of RQFP logic poses
enormous challenges due to its distinctive logic function and struc-
ture. Furthermore, the circuit scale severely restricts the applicability
of the existing exact logic synthesis method for RQFP logic. There-
fore, this paper proposes RCGP, an automatic synthesis framework
based on efficient Cartesian genetic programming, to generate large
RQFP logic circuits. RCGP considers the characteristics of RQFP
logic circuits to minimize the number of gates and garbage outputs.
Meanwhile, RCGP combines circuit simulation with formal verifi-
cation to assess the functional equivalence between the parent and
its offspring. Experimental results on reversible logic benchmarks
demonstrate the effectiveness of RCGP.

1 Introduction
The requirement for reversible computing arises from the funda-

mental limitations of traditional irreversible logic systems in terms
of energy dissipation. In conventional logic systems, such as com-
plementary metal-oxide-semiconductor (CMOS) logic, irreversible
operations result in information loss and energy dissipation in the
form of heat. According to the Landauer principle in 1961 [1], every
bit loss of information is involved in a loss of 𝑘𝐵𝑇 ln 2 J of energy,
where 𝑘𝐵 is the Boltzmann constant and 𝑇 is the temperature of the
system. This heat dissipation becomes significant as the rate of the
processor frequency increases. Therefore, reversible computing has
gained significant attention as a promising approach to minimizing
energy dissipation in logic operations. It can theoretically produce
nearly energy-free computation systems by preserving the loss of
information [2]. This approach also holds particular significance in
quantum computing due to the inherent reversibility of quantum
operations [3].
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Figure 1: Functional schematics of (a) RQFP logic gate, (b)MCT
gate, and (c) MCF gate, where symbols employed include · for
logical conjunction, + for logical disjunction, and − for logical
negation.

However, the practical implementation of reversible computing
presents significant challenges. It requires both logical and phys-
ical reversibility, as well as the development of ultra-low power
logic devices [4]. Takeuchi et al. proposed the reversible quantum-
flux-parametron (RQFP) [5], the first practical reversible logic gate
using adiabatic superconducting devices. The logical and physical
reversibility of RQFP has also been validated through experimen-
tal demonstrations [5, 6]. Moreover, an RQFP logic full adder was
designed and fabricated by Yamae et al. [7], further revealing the
reversibility and feasibility of RQFP logic circuits. Therefore, RQFP
logic gains increasing attention from researchers [8, 9].

However, the design of RQFP logic circuits is complicated due
to the lack of automated design tools [8]. The RQFP logic gate is
implemented by adiabatic quantum-flux-parametron (AQFP) [10],
an energy-efficient superconductor logic element based on the quan-
tum flux. Fig. 1(a) shows the structure of a normal RQFP logic gate
composed of three AQFP splitter gates and three AQFP majority
gates. So, the RQFP logic gate has three functional outputs, i.e.,
𝑅(𝑎, 𝑏, 𝑐) =

{
𝑀 (𝑎, 𝑏, 𝑐), 𝑀 (𝑎, 𝑏, 𝑐), 𝑀 (𝑎, 𝑏, 𝑐)

}
= {𝑥,𝑦, 𝑧}, where 𝑎, 𝑏,

and 𝑐 are three inputs, 𝑥 , 𝑦, and 𝑧 are three outputs, and 𝑀 (·) rep-
resents a three-input majority function 𝑀 (𝑎, 𝑏, 𝑐) = 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐 .
In contrast, a conventional reversible logic circuit primarily con-
sists of basic Toffoli [11] and Fredkin [12] gates, as well as their
extensions commonly known as multiple-control Toffoli (MCT) and
multiple-control Fredkin (MCF) gate libraries. As shown in Fig. 1(b)
and Fig. 1(c), these two kinds of reversible logic gates can be viewed
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as multi-controlled NOT and multi-controlled SWAP gates, respec-
tively. It is clear that their output functions mainly focus on the
last one or two output ports and realize the XOR-sum-of-products.
Furthermore, RQFP logic must also satisfy specific constraints, in-
cluding the same fan-out limitation and path-balancing requirement
as AQFP logic [13–15], since RQFP logic is realized through AQFP
logic. Consequently, the logic synthesis methods of conventional
reversible logic do not apply to RQFP logic due to these distinctions
in logic function and structure. In addition, the energy dissipation of
RQFP logic circuits is significantly affected by the number of gates
and garbage output. Exact logic synthesis [15] is the only existing
method for generating RQFP logic circuits, but it is severely limited
by the circuit scale, which has been demonstrated in the experiment.
Therefore, the study of practical logic synthesis methods of RQFP
logic circuits is vital.

Considering these above challenges, this paper proposes RCGP,
an efficient Cartesian genetic programming (CGP)-based automatic
synthesis framework for RQFP logic circuits, which aims to optimize
the number of RQFP logic gates and garbage outputs. In summary,
this paper makes the following contributions:
• This paper proposes a complete logic synthesis framework for
RQFP logic circuit generation from RTL descriptions.

• The proposed algorithm employs a dynamic CGP encoding to
present an RQFP logic circuit and integrates circuit simulation
with formal verification to evaluate the functional equivalence
between the parent circuit and its offspring.

• Furthermore, three mutations are proposed to effectively and
efficiently generate a legal RQFP logic circuit.

• Experimental results of RCGP on large RevLib circuits [16] and
reversible reciprocal circuits [17] show that the number of RQFP
logic gates and the number of garbage outputs are significantly
reduced by 32.38% and 59.13% on average, respectively.

2 Preliminaries
2.1 Reversible Quantum-Flux-Parametron Logic

As a superconductor logic gate, the RQFP logic gate exhibits both
logical and physical reversibility [6]. Fig. 1(a) illustrates its structure,
composed of three three-output AQFP splitter gates (𝑆1, 𝑆2, 𝑆3) and
three three-input AQFPmajority gates (𝑀1, 𝑀2, 𝑀3). Similar to AQFP
logic, excitation currents 𝐼𝑥1 and 𝐼𝑥2 are required to drive these
splitter gates and majority gates, respectively. The outputs of the
RQFP logic gate source from the three three-input AQFP majority
gates, making RQFP logic possess a compact logic representation. In
a normal RQFP logic gate, an inverter is configured before the fixed-
position input of each AQFP majority. This produces a one-to-one
correspondence between the inputs and outputs of the RQFP gate
to make the RQFP logic gate logically reversible [5]. Since inverters
can be freely integrated into any input of each AQFP majority gate,
the functionality of RQFP logic gates can be extended, which means
that the function of each RQFP logic gate can be configured by the
inverter setting.

Moreover, since the RQFP logic gate is realized by AQFP logic
gates, it also inherits the inherent characteristics [13–15] of AQFP
logic. In AQFP logic, each output of each AQFP logic gate can only
drive one successor, i.e., the single fan-out limitation. The insertion of
AQFP splitter gates can eliminate this limitation. Similarly, the RQFP
splitter can be constructed by the introduction of constant inputs

to satisfy this limitation [15]. For example, a 1-to-3 splitter can be
achieved by 𝑅(1, 𝑎, 0) = {𝑀 (1, 𝑎, 0), 𝑀 (1, 𝑎, 0), 𝑀 (1, 𝑎, 0)} = {𝑎, 𝑎, 𝑎}.
Additionally, all inputs to each gate in AQFP logic must possess
the same clock phases, i.e., the path-balancing requirement. This
requirement can be satisfied by the insertion of AQFP buffers. Simi-
larly, two cascaded AQFP buffers can be used to construct an RQFP
buffer [15]. Meanwhile, the RQFP inverter can also be constructed
by inserting an inverter in the RQFP buffer. Consequently, RQFP
logic circuits must perform RQFP buffer and splitter insertion to
meet these requirements, thereby ensuring proper circuit operation.

2.2 Cartesian Genetic Programming
Evolutionary algorithms show great potential in solving complex

optimization problems. The most representative is the Cartesian
genetic algorithm proposed by Julian F. Miller and Peter Thomson in
2000 [18]. Cartesian genetic programming (CGP) is a variant of ge-
netic programming where the candidate solutions are represented as
a string of fixed-length integers mapped to a directed acyclic graph.
In CGP, the genotype is represented as a two-dimensional grid of
nodes, where each node corresponds to a function or terminal. The
genotype is then translated into a phenotype, which represents a
computational structure or program. This modular representation al-
lows for the efficient exploration of a vast search space, enabling CGP
to tackle problems with high dimensionality and complexity, such
as mathematical equations, computer programs, neural networks,
and general digital circuits.

The CGP is the most powerful evolutionary technique in the
domain of evolutionary algorithm (EA)-based logic synthesis and
optimization[19, 20]. Many competitive results in general circuit
design have been achieved since the introduction of the CGP. Partic-
ularly, the scalability of CGP has witnessed notable advancements
with the introduction of an SAT-based CGP in 2011[21]. This ap-
proach addresses the challenge posed by the computationally expen-
sive exhaustive circuit simulation, which is typically employed to
determine the Hamming distance between a candidate solution and a
given specification. A binary decision diagram (BDD)–based fitness
function [22] is further used to speed up the evolution of complex
circuits. Then, the combination of a circuit simulation and a formal
verification [23] can support the optimization of combinational cir-
cuits with hundreds of inputs and thousands of gates. Besides, more
complex real-world instances (millions of gates) can be optimized
using windowing [24]. Consequently, this paper adopts CGP as the
foundation for implementing an efficient automatic synthesis algo-
rithm for RQFP logic to address the challenges associated with the
generation of RQFP logic circuits.

3 RCGP
RQFP logic exhibits unique characteristics that present significant

challenges in the design of RQFP logic circuits. RQFP logic gate
has three output ports, each capable of independently functioning
as a majority function. Additionally, RQFP logic circuits require
buffer and splitter insertion to meet fan-out and path-balancing
requirements. These distinct features of RQFP logic contribute to the
complexity of the RQFP logic circuit design. To end this, this paper
proposes an end-to-end circuit generation framework for RQFP logic,
as shown in Fig. 2. Unlike the existing exact synthesis method [15]
that takes truth tables as input, the proposed RCGP divides the entire
process into several phases to gradually optimize the RQFP logic
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Figure 2: Design flows of proposed RCGP and existing exact
logic synthesis, where lines represent interfaces between files
and tools or methods.

circuit. First, existing common logic synthesis tools are employed to
process the RTL input and optimize the circuit. Then, the generated
network is directly converted to the RQFP logic netlist. Next, RQFP
splitters are inserted into it to meet the fan-out limitation. In this way,
an initial RQFP logic network is obtained. The RQFP-oriented CGP is
proposed to optimize this initial RQFP logic network and minimize
the number of RQFP logic gates and garbage outputs. Finally, after
RQFP buffer insertion, the final RQFP logic circuit can be obtained.

3.1 Initialization
To support the RTL description inputs with multiple standard

formats, such as the Verilog format, .aig format, and .blif format,
RCGP first automatically integrates current popular open-source
logic synthesis tools to process them, including ABC [25] and mock-
turtle [26]. Both ABC and mockturtle can optimize the AND-inverter
graph (AIG)-based network, and mockturtle also can optimize the
majority-inverter graph (MIG)-based network. The selection of both
these tools and corresponding methods is configurable. After logic
synthesis using these tools, AIG or MIG-based optimized networks
can be obtained. Since the introduction of constant inputs can make
the RQFP logic gate realize AND, OR, NOT, and majority func-
tions easily, the AIG or MIG-based network can directly be con-
verted into the RQFP logic netlist. Take the AND function as an
example. Introducing one constant 1 can realize it, i.e., 𝑅(𝑎, 𝑏, 1) =
{𝑀 (𝑎, 𝑏, 1), 𝑀 (𝑎, 𝑏, 1), 𝑀 (𝑎, 𝑏, 0)} = {𝑎 + 𝑏, 𝑎 + 𝑏, 𝑎𝑏}, where the last
output achieves the AND function.

After generating the initial RQFP logic netlist, a lot of multiple
fan-outs may exist. To mitigate the complexity of RQFP logic op-
timization, RQFP splitters are inserted into the initial RQFP logic
netlist ahead of time to meet the fan-out limitation. In this way, the
initialization process of RQFP logic circuits is completed.

3.2 CGP-based Optimization
3.2.1 CGP Encoding and Evaluation. To optimize the RQFP logic
circuit, CGP encoding is first introduced to represent the RQFP logic
circuit. CGP usually encodes a candidate solution using an integer
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Figure 3: Schematics of CGP individuals encoding a 2-to-4 de-
coder circuit with 𝑛𝑝𝑖 = 2 primary inputs and 𝑛𝑝𝑜 = 4 primary
outputs. (a) shows a CGP individual with 𝑛𝑟 = 4 RQFP logic
gates and 𝑛𝑔 = 2 garbage outputs. (b) is the individual with
𝑛𝑟 = 4 RQFP logic gates (including one useless gate) and 𝑛𝑔 = 4
garbage outputs after performing the mutation on (a). (c) is
the final individual with 𝑛𝑟 = 3 RQFP logic gates and 𝑛𝑔 = 1
garbage outputs after removing useless gates in (b). (d) is the
final RQFP logic circuit after RQFP buffer insertion for (c).

array consisting of 𝑛𝐶 · 𝑛𝑅 programmable nodes, where 𝑛𝐶 and 𝑛𝑅
determine the number of columns and rows, respectively. As for the
circuit optimization, a linear form of CGP is usually preferred, i.e.,
𝑛𝑅 = 1. Each programmable node has a fixed number of inputs 𝑛𝑖
and outputs 𝑛𝑜 and can implement one of 𝑛𝑓 predefined primitive
functions. So, since each node represents an RQFP logic gate in
RCGP, both 𝑛𝑖 and 𝑛𝑜 are set to 3. Besides, since the function of
each RQFP logic gate depends on its inverter configuration, there
are 29 = 512 kinds of functions, i.e., 𝑛𝑓 = 512. Any input to each
node can be connected to the output of a node placed in the previous
𝑛𝑙 columns or to one of 𝑛𝑝𝑖 primary inputs. Due to the complicated
evaluation, the cycle is not allowed in the standard version of CGP,
which means there is no feedback to the node from its successors.
Therefore, the candidate solution is encoded as a CGP chromosome
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with 𝑛𝐿 = 𝑛𝐶 ×𝑛𝑅 × (𝑛𝑖 + 1) +𝑛𝑝𝑜 integers, where 𝑛𝑝𝑜 is the number
of primary outputs of the circuits.

Since the positions of input ports in each RQFP logic gate are fixed
and are directly related to the gate function output, the CGP encoding
needs to adjust to apply to RQFP logic. Take a 2-to-4 decoder as an
example. Fig. 3(a) illustrates its CGP encoding, where 𝑛𝐶 = 4 and
𝑛𝑅 = 1. The 2-to-4 decoder has 𝑛𝑝𝑖 = 2 primary inputs 𝑥0 and 𝑥1
and 𝑛𝑝𝑜 = 4 primary outputs 𝑦0, 𝑦1, 𝑦2 and 𝑦3. Considering the
requirement of RQFP splitters for constant inputs, constant 1 is
introduced and indexed to 0. The primary inputs are indexed from
1 to 𝑛𝑝𝑖 . The integer substring within each pair of parentheses in
the long green string at the bottom is the CGP encoding of the
corresponding RQFP node. For example, “(5, 4, 0, 101-100-000)” is the
CGP encoding of the second RQFP logic gate, where “5, 4, 0” denotes
the interconnection of its input ports with the output ports indexed 5,
4, 0 (the constant input), respectively, and “101-100-000” denotes the
inverter configuration in front of its three AQFP majority gates. The
inverter configuration is represented by an integer with 9 bits, each
of which indicates whether an inverter exists in the corresponding
input port. For instance, "100" indicates whether an inverter exists
before the second input port of each AQFP majority gate within
the second RQFP logic gate. Besides, the last item “(6, 10, 13, 14)”
represents the indexes of output ports connected to primary outputs,
where “10” represents that the primary output 𝑦1 is connected to
the second output port of the third RQFP logic gate.

After encoding a candidate solution, its evaluation is also required.
The fitness value evaluation of the CGP chromosome in RCGP con-
tains two phases. The first is the function evaluation, which calcu-
lates the success rate of the simulation-based equivalence checking.
The second is the performance evaluation, which calculates the num-
ber of RQFP logic gates and garbage outputs. The detail is defined
as follows:
(1) Only when the success rate reaches 100%, the performance evalu-

ationwill be performed, thereby ensuring the function legitimacy
of the solution.

(2) Then, the performance evaluation gives priority to ensuring the
optimal number of RQFP logic gates.

(3) In addition, while ensuring the optimal number of RQFP logic
gates and garbage outputs, RCGP will also consider reducing
the number of RQFP buffers that need to be inserted for the path
balancing requirement.

3.2.2 Mutation. After constructing the CGP chromosome, CGP
mutation must occur to produce its offspring. Point mutation is typi-
cally preferred due to its high efficiency. Point mutation randomly
modifies up to𝑚 genes (integers) of a parent genotype to create an
offspring, where𝑚 depends on the mutation rate 𝜇, 𝜇 ∈ [0, 1]. To
ensure that each gene has a chance to be modified randomly within
each mutation, RCGP sets the maximum of𝑚 to 𝜇 ∗ 𝑛𝐿 , where 𝑛𝐿 is
the length of the chromosome.

Considering the CGP encoding, a single mutated gene causes
either reconnection of a node, reconnection of a primary output,
or change in the inverter configuration of a node. Due to the fan-
out limitation of RQFP logic, there are two situations for the node
reconnection. Notably, the initialization process has ensured the
single fan-out limitation of the parent genotype.

Algorithm 1: The flow of CGP-based optimization.
Input: Initial chromosome 𝑐 , total number 𝑁 of generations,

mutation rate 𝜇, number 𝜆 of offspring.
Output: Optimized chromosome.

1 calculate the functional fitness 𝑓 of 𝑐 .
2 𝑓𝑛 = 𝑓 , 𝑐𝑛 = 𝑐, 𝑛𝑟 = ∞, 𝑛𝑔 = ∞, 𝑛𝑏 = ∞.
3 if 𝑓 == 1 then
4 remove useless nodes to shrink 𝑐 and update 𝑐 to 𝑐𝑛 .
5 calculate the number (𝑛𝑟 , 𝑛𝑔, 𝑛𝑏 ) of gates, garbage

outputs, and buffers in 𝑐𝑛 .
6 for 𝑖 = 1 → 𝑁 do
7 𝑐 = 𝑐𝑛 .
8 for 𝑗 = 1 → 𝜆 do
9 perform the mutation on 𝑐 to generate a offspring 𝑐′.

10 calculate the functional fitness 𝑓 ′ of 𝑐′.
11 if 𝑓 ′ == 1 then
12 remove useless nodes to shrink 𝑐′ and update 𝑐′.
13 calculate the number (𝑛′𝑟 , 𝑛′𝑔, 𝑛′𝑏 ) of gates,

garbage outputs, and buffers in 𝑐′.
14 if (𝑛𝑟 , 𝑛𝑔, 𝑛𝑏 ) > (𝑛′𝑟 , 𝑛′𝑔, 𝑛′𝑏 ) then
15 (𝑓𝑛, 𝑐𝑛, 𝑛𝑟 , 𝑛𝑔, 𝑛𝑏 ) = (𝑓 ′𝑛 , 𝑐′𝑛, 𝑛′𝑟 , 𝑛′𝑔, 𝑛′𝑏 ).
16 else if 𝑓 ′ > 𝑓𝑛 then
17 (𝑓𝑛, 𝑐𝑛) = (𝑓 ′𝑛 , 𝑐′𝑛).
18 return 𝑐𝑛 .

(1) When the output port corresponding to the mutated value of a
gene has been connected to another gene, RCGP will swap the
values of these two genes. As shown in Fig. 3(a), assume that ‘9’
in the last second item “(9, 8, 3, 000-110-111)” mutates to ‘8’, and
then the output port corresponding to ‘8’ is already connected
to the second input port of the last node. Therefore, the swap
operation is executed, i.e., “(8, 9, 3, 000-110-111)”.

(2) When the output port corresponding to the mutated value of
a gene is the constant input 1 or has no output, this value is
directly assigned to this gene. After mutating to “(8, 9, 3, 000-110-
111)”, assume that ‘9’ continues to mutate to ‘0’, the genotype
of the last node becomes “(8, 0, 3, 000-110-111)”. This means
that the second input port of the last node is connected to the
constant input 1, as shown in Fig. 3(b).

For the reconnection of a primary output, its gene is directly updated
to the mutated value, such as 𝑦1 in Fig. 3(b) changed from 10 to 7.
Furthermore, for the change of an inverter configuration 𝑓 , the
mutation will produce an integer 𝛽 ∈ [0, 9) to update 𝑓 to 𝑓 ′ =

𝑓 ⊕ (1 ≪ 𝛽), which means that the (1 + 𝛽)th inverter is inserted or
removed. As shown in Fig. 3(a), initial inverter configuration of the
second node is “101-100-000” (352) and then is updated to “101-011-
000” (344 = 352 ⊕ ((1 ≪ 3) + (1 ≪ 4) + (1 ≪ 5))) through three
mutations, as shown in Fig. 3(b). In this way, the output function of
the second majority in the second node is updated.

3.2.3 Shrink. After CGP mutation, some useless nodes may exist,
such as the third node “(0, 0, 7, 001-101-101)” in Fig. 3(b). This directly
indicates a primary advantage of CGP encoding that even if the size
of the chromosome is fixed, the size of the phenotype is variable
since some nodes need not be used. Since RCGP aims to minimize
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Table 1: Experimental results on small circuits from the RevLib benchmark [16].

Testcase Original Initialization Exact logic synthesis RCGP
𝑛𝑝𝑖 𝑛𝑝𝑜 𝑔𝑙𝑏 𝑛𝑟 𝑛𝑏 JJs 𝑛𝑑 𝑛𝑔 𝑛𝑟 𝑛𝑏 JJs 𝑛𝑑 𝑛𝑔 T (s) 𝑛𝑟 𝑛𝑏 JJs 𝑛𝑑 𝑛𝑔 T (s)

1-bit full adder 3 2 1 6 2 152 3 7 3 3 84 3 2 41.19 3 2 80 3 2 75.69
4gt10 4 1 3 3 3 84 3 6 3 4 88 3 5 76.01 3 4 88 3 5 75.43
alu 5 1 4 12 10 328 5 17 4 7 124 4 5 1893.54 4 6 120 4 5 232.51
c17 5 2 3 11 7 292 4 16 5 14 176 5 5 106167.29 5 10 160 4 5 321.17
decoder_2_4 2 4 0 8 3 204 3 10 3 3 84 3 1 24.77 3 3 84 3 1 236.36
decoder_3_8 3 8 0 20 12 528 4 23 \ 7 25 268 7 1 978.53
graycode4 4 4 0 15 7 388 4 21 \ 7 10 208 5 3 835.74
ham3 3 3 0 16 5 404 4 18 5 5 140 5 1 2216.02 5 4 136 5 2 326.41
mux4 6 1 5 11 10 304 5 16 \ 7 19 244 6 7 769.14
* ‘\’ represents that the exact logic synthesis method can not find a feasible solution within 240,000 seconds.

the number of gates and garbage outputs, these useless nodes can
be removed to shrink the size of the chromosome, thereby reducing
the search space, as shown in Fig. 3(c). Now, the chromosome length
of the 2-to-4 decoder is reduced from 20 to 16.
3.2.4 Flow of CGP-based Optimization.Algorithm 1 shows the com-
plete process of CGP-based optimization, which employs a typical
(1 + 𝜆) evolutionary strategy [18]. It mutates one best parent geno-
type to create 𝜆 offspring within each generation (lines 8-10). An
offspring with a fitness better or equal to the parent becomes the new
parent for the next generation (lines 11-17). After 𝑁 generations, the
optimal offspring is returned (18).

3.3 RQFP Buffer Insertion
Following the CGP-based optimization, it is possible that certain

RQFP logic gates within the generated RQFP logic circuit may not
satisfy the path balancing requirement. Consequently, the insertion
of RQFP buffers becomes necessary to ensure uniform clock phases
for all inputs to each gate. That is, a corresponding number of RQFP
buffers must be inserted into each edge according to the clock phase
difference between its connected RQFP logic gates. Fig. 3(d) shows
the buffer insertion result of the RQFP logic circuit shown in Fig. 3(c)
generated for the 2-4 decoder.

4 Experimental Results
The proposed automatic RQFP logic synthesis framework RCGP

was implemented in C++ and Python. The experiments used the
RevLib benchmark circuits [16] and the reversible reciprocal circuits
[17] to evaluate RCGP. The logic synthesis phase of RCGP first used
the “resyn2” command in the ABC [25] to obtain an optimized AIG
network and then employed the “aqfp_resynthesis” command in the
mockturtle to resynthesis it into an AQFP-oriented MIG network.
The “aqfp_resynthesis” command implements a state-of-the-art MIG-
based logic optimization method [27] of AQFP logic. Besides, the
number 𝑁 of generations and the mutation rate 𝜇 in RCGP was
50,000,000 and 1, respectively. The number 𝑛𝐶 of columns was the
number of RQFP logic gates in the generated initial RQFP logic
netlist. 𝑛𝑙 kept the same as the 𝑛𝐶 and 𝑛𝑅 was 1. The experiments
were executed on the machine with Intel(R) Xeon(R) CPU E5-2630
v2 @ 2.60GHz and 256.0 GB memory running CentOS 7.

There were two baselines to compare with RCGP. The first was
designed by a heuristic method. As shown in Fig. 2, after the initial-
ization and RQFP splitter insertion, the baseline directly carries out
the RQFP buffer insertion to meet the path-balancing requirement,

thereby generating RQFP logic circuits. The second was the existing
exact logic synthesis method [15] using Z3 solver. According to the
input truth table, it can directly generate the RQFP logic circuit with
a given number of RQFP logic gates and garbage outputs. To ensure
the consistency of each experimental result in handling the path
balancing requirement for primary inputs and primary outputs of
the generated circuit, both primary inputs and primary outputs re-
quire RQFP buffer insertion so that they are in the same clock stage,
respectively.

Table 1 shows the experimental results on small circuits from the
RevLib benchmark. The “Original” part shows the attributes of input
circuits, including the number 𝑛𝑝𝑖 of primary inputs, the number 𝑛𝑝𝑜
of primary outputs, and the lower bound 𝑔𝑙𝑏 = max(0, 𝑛𝑝𝑖 − 𝑛𝑝𝑜 ) of
garbage outputs. The “Initialization” part shows the results of the first
baseline method. 𝑛𝑟 represents the number of used RQFP logic gates,
and 𝑛𝑏 represents the number of RQFP buffers inserted for the path-
balancing requirement. “JJs” represents the number of Josephson
junctions (JJs). Since JJs are a critical component of AQFP circuits and
are used to create the fluxons used for computation, their number can
estimate the complexity and energy efficiency of a givenAQFP circuit.
So, the number of JJs can also be used as a cost metric of RQFP logic
circuits realized by AQFP logic. Since both a buffer and a splitter have
2 JJs, and a 3-input MAJ has 6 JJs in current AQFP logic circuits, the
numbers of JJs for each RQFP logic gate and RQFP buffer are 24 and
4, respectively. 𝑛𝑑 and 𝑛𝑔 represent the circuit depth and the number
of garbage outputs in generated RQFP logic circuits, respectively.
The “Exact logic synthesis” part shows the results of the exact logic
synthesis method [15] for RQFP logic, where “T (s)” represents the
runtime of the method and its unit is the second. The “RCGP” part
shows the results of the proposed algorithm RCGP. Compared to the
first baseline, the proposed RCGP significantly reduced the number
of RQFP logic gates, JJs, and garbage outputs, specifically by 50.80%,
43.53%, and 71.55%, respectively. Meanwhile, although the exact
logic synthesis can generate the RQFP logic circuit with the optimal
number of RQFP logic gates and garbage outputs, the results of
RCGP can be near even up to its results while using less runtime.
Besides, the exact logic synthesis could not also find the solution for
circuits “decoder_3_8”, “graycode4”, and “mux4” under sufficiently
given 240,000 seconds. Therefore, these experimental results show
that the proposed RCGP can generate RQFP logic circuits with a
near-optimal number of RQFP logic gates and garbage outputs on
small benchmark circuits.
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Table 2: Experimental results on large circuits from the RevLib benchmark [16] and the reversible reciprocal circuits [17].

Testcase Original Initialization Exact logic
synthesis

RCGP
𝑛𝑝𝑖 𝑛𝑝𝑜 𝑔𝑙𝑏 𝑛𝑟 𝑛𝑏 JJs 𝑛𝑑 𝑛𝑔 𝑛𝑟 𝑛𝑏 JJs 𝑛𝑑 𝑛𝑔 T (s)

4_49_7 4 4 0 35 17 908 5 41 \ 21 83 836 13 12 1244.71
graycode6_11 6 6 0 25 9 636 4 35 \ 13 31 436 7 7 853.09
mod5adder_66 6 6 0 139 137 3884 10 165 \ 105 663 5172 29 63 11102.79
hwb8_64 8 8 0 1427 2727 45156 20 1662 \ 1397 2729 44444 20 1533 157468.63
intdiv4 4 4 0 26 15 684 5 32 \ 15 40 520 9 9 876.90
intdiv5 5 5 0 51 46 1408 8 63 \ 35 119 1316 14 20 1859.56
intdiv6 6 6 0 107 95 2948 9 128 \ 76 292 2992 18 45 5192.59
intdiv7 7 7 0 200 202 5608 11 234 \ 128 764 6128 30 80 7562.12
intdiv8 8 8 0 381 534 11280 15 453 \ 236 1681 12388 31 164 17786.66
intdiv9 9 9 0 720 944 21056 16 859 \ 483 1859 19028 25 414 64670.10
intdiv10 10 10 0 1225 1986 37344 20 1453 \ 833 2877 31500 26 817 146310.78
* ‘\’ represents that the exact logic synthesis method can not find a feasible solution within 240,000 seconds.

Table 2 shows the experimental results on large circuits from the
RevLib benchmark and reversible reciprocal circuits. It is evident
that exact logic synthesis could not find the solution of any testcase
under a given sufficient time, further enhancing the essentiality of
RCGP. In addition, compared to the first baseline, the proposed RCGP
has a significant reduction in the number of RQFP logic gates and the
number of garbage outputs, specifically by 32.38% and 59.13%, respec-
tively. Therefore, these experimental results demonstrate that the
proposed RCGP can effectively and efficiently optimize large RQFP
logic circuits regarding the number of gates and garbage outputs.

5 Conclusion
This paper proposed RCGP, a Cartesian genetic programming-

based automatic synthesis framework for RQFP logic. RCGP employs
CGP encoding to present the RQFP logic circuit and combines circuit
simulation with formal verification to assess the functional equiv-
alence between the parent and offspring. After the RQFP-oriented
mutation, the RQFP logic circuit can be optimized for the number of
gates and garbage outputs. The experimental results on the RevLib
benchmark circuits and reversible reciprocal circuits show the effec-
tiveness of RCGP on the generation of RQFP logic gates. Furthermore,
the experimental results demonstrated the applicable limitation of
exact logic synthesis on larger RQFP logic circuits, further revealing
the significance of the proposed RCGP.
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