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Abstract—Despite the availability of numerous frameworks
and tools for automated PCB placement and routing, the
industry still relies heavily on expert designers to ensure
layout reliability and performance. However, when design
requirements change, such as adjustments to board dimensions
or the addition of new obstacles, experts must often recreate
similar layouts from scratch, leading to substantial inefficiencies
in both time and resources. To address this challenge, we
introduce PCB-Migrator, an automated framework for PCB
layout migration. Our approach leverages an offset constraint
graph to capture positional relationships among components in
the referenced design and effectively map them onto the new
PCB. Additionally, PCB-Migrator builds routing path graphs
to extract routing characteristics from the reference layout and
applies graph matching to guide the routing process on the new
board. Experimental results demonstrate that PCB-Migrator
outperforms existing baselines, achieving faster runtimes while
preserving the key design characteristics and performance of
the referenced PCB.

I. INTRODUCTION

Printed circuit board (PCB) plays a critical role in almost
all industrial applications. As electronic products have be-
come more versatile and complex, the number of nets and
pins on modern PCBs is significantly increasing. However,
designing these complicated PCBs presents significant chal-
lenges, which involve the analysis of the power and signal
integrity [1], as well as many specific design rules for the
topology of placement and routing (PnR). After each layout
is completed, it must be examined by simulation to ensure
its performance [2], resulting in a timing-consuming design
process. Therefore, it is critical to develop effective tools for
automated PCB design, especially for physical PnR.

The challenges of automated PCB PnR mainly lie in
the complex design space and the lack of effective early
evaluation. Specifically, each component can be rotated and
placed on both sides of the board. The shape of the board
frame and the components are often irregular. In addition to
the top and bottom layers, there are more mid-layers (up to
30) that can be used for routing, which also significantly
increases the design space. Meanwhile, most automated
frameworks perform PnR separately. Thus, it is difficult
to foresee the subsequent routing at the early placement
stage only through conventional metrics like HPWL. This
leads to poor routability and performance, and even makes
it impossible to get a feasible solution.

To solve the above challenges, various frameworks have
been developed for automated PCB PnR design [3]–[21],
typically integrating multiple design constraints with op-
timization objectives. OpenROAD [22] has open-sourced
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Fig. 1 Our PCB-Migrator compared with previous automated
frameworks that design PCBs from scratch. Migration from
expert results enables PCB-Migrator to have foresight in the
early stage, thus enhancing its practical performance.

PCB-PR-App [17], which is composed of SA-PCB [19] and
PcbRouter [18], respectively solving the PCB PnR problem.
NS-Place [7] minimized net congestion using a support vec-
tor machine-like formulation and performed legalization by
solving a routability-aware Mixed-Integer Linear Program-
ming (MILP). HiePlace [11] proposed a heuristic algorithm
to optimize the placement, thereby reducing manufacturing
complexity. These methods only use traditional metrics to
optimize PnR, which is far from the expert level.

Through data-driven approaches, some studies incorpo-
rate historical experience into AI models to enhance PCB
PnR design. DeepPCB [20] is a powerful commercial tool
for implementing PCB PnR using reinforcement learning,
aiming to improve the performance of industrial PCBs.
PCBAgent [15], a framework combining LLM and RL
agents, is proposed to enhance PCB placement. TRouter [5]
is a thermal-driven routing framework via a machine learning
model. However, these methods heavily rely on the accuracy
of the performance model or require large amounts of diverse
training data, resulting in very slow optimization efficiency
and poor transferability.

In practice, all the above automatic frameworks usually
fail to meet the specific requirements of real-world projects.
The previous “design-from-scratch” frameworks only use
some approximate estimation indicators, such as HPWL at
placement and cost in the path search algorithms at routing.
This method may have the ability to find feasible PnR
solutions, but it falls short of meeting the industrial-grade
requirements, with poor performance and reliability. In addi-
tion, these automatic frameworks generally lack the ability to
foresee potential routing problems, which significantly limits
the design quality. Therefore, it is almost impossible for
existing “design-from-scratch” frameworks to obtain PCB
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Fig. 2 The overall flow of PCB-Migrator.

layouts that can rival those of expert designs.
Migration is a potential method to address the above

limitations and bridge the gap between expert design and
actual requirements. As shown in Fig. 1, when design re-
quirements change, such as adjustments to board dimensions
or the addition of new obstacles, using existing expert
designs as references for migration can achieve comprehen-
sive higher performance, especially in electromagnetic (EM)
performance, which can reach expert-level. EM performance
directly determines the actual usability of PCB in the indus-
try. Therefore, this paper performs automatic migration to
enhance the practical usability and performance of PCBs to
expert-level design. Overall, our contributions are as follows:

1) To our best knowledge, this paper first proposes a
PCB PnR migration framework named PCB-Migrator to
enhance the performance of the migrated PCB layouts.

2) We propose the offset constraint graph to preserve the
design characteristics and guide the PCB placement
migration. We also design a relaxation and legalization
strategy to improve the efficiency significantly.

3) To preserve the routing characteristics, we propose the
routing path graph and a representation of neighborhood
connections to perform routing migration.

II. PRELIMINARIES

A. PCB PnR Migration
Different from previous automatic frameworks, PCB PnR
migration is a new technology that extracts placement and
routing characteristics from referenced PCB layouts and
applies them to the new designs. This approach not only
efficiently achieves design closure but also ensures practical
usability and expert-level performance, compared to conven-
tional “design-from-scratch” frameworks.

B. Problem Formulation
In PCB migration, the new board frame may significantly
differ from that of the original PCB and may contain
additional obstacles. The netlist of the migrated PCB must
remain identical to that of the reference. We aim to ensure
that the performance and design characteristics of the newly
migrated PCB layout are close to those of the referenced
layout through PnR migration. Our problem formulation is
formally defined as follows:

Problem 1 (PCB PnR migration). Given a referenced PCB
layout and a modified board frame containing obstacles, the
goal is to generate a new PCB layout that preserves the
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Fig. 3 Example of offset constraint graph construction.
Assuming component C is within the distance threshold of
component A, an edge exists between components A and
C. The edge weight is the offset of their coordinates, i.e.,
(−6,−5). The overlapping area of component A’s crossing
region and component C is 2 × 1. Component C has a
smaller area 2 × 6 than component A. So the edge weight
is calculated as e−

√
(−6)2+(−5)2 + µ · 2×1

2×6 .

original PnR characteristics to maintain the performance of
the referenced PCB.

III. ALGORITHM

This section proposes PCB-Migrator, as shown in Fig. 2.
In placement migration, most design characteristics can be
reflected in the relative position relationship with weights.
Therefore, PCB-Migrator constructs the offset constraint
graphs and formulates the placement into an MILP to
preserve the placement characteristics. As for routing, be-
cause each component may have positional variations, PCB-
Migrator constructs rotation-invariant routing path graphs
for both the referenced and the new placement. It then
performs graph matching to preserve the original routing
characteristics, guiding detailed routing to complete the PCB
PnR migration.

A. Placement Migration

Offset Constraint Graph (OCG) Construction. In place-
ment migration, it is vital to extract and preserve the posi-
tional relationships between components in the referenced
PCB. These relationships significantly influence the sub-
sequent routing and directly affect the performance of the
migrated PCB. However, the conventional mixed constraint
graph (MCG) [23], [24] only extracts approximate relations
between components, which cannot effectively guide place-
ment. Furthermore, in the MCG, positional constraints are
limited to only between two adjacent components, which
severely limits its effectiveness in PCB placement migration.

Compared to the MCG, our proposed offset constraint
graph includes more specific information on the edges.
For each component, edges are constructed for all other
components within the distance threshold, along with their
coordinate offsets and calculated weights. The weights of
edges are defined as the offsets of different components’ co-
ordinates. For all components within the distance threshold,
the weights of the edges are calculated as

Wij = e−dij + µ · Sij

min(Si, Sj)
, (1)

where dij represents the Euclidean distance between com-
ponents i and j. Sij represents the overlapping area of
component i’s crossing region and component j, as shown
in Fig. 3. µ is a balance factor. This setting means that there
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Fig. 4 Relaxation and legalization iteratively to speed up the placement migration.

will be stronger constraints between components with abso-
lute horizontal or vertical position relationships, and closer
components have stronger positional constraints. Compared
to the conventional MCG, the proposed OCG is more suit-
able for extracting the complicated positional relationships
between components.
Offset Constraint Graph-Guided Placement. With the
OCG, PCB-Migrator will get the placement migration result
based on the values and weights of positional constraints.
Additionally, the total wirelength, approximated as HPWL, is
incorporated as another objective. Because continuous coor-
dinates (x, y) and discrete integer angles θ of all components
need to be solved simultaneously, the placement migration
is formulated as an MILP:

min
|C|∑
i=1

|C|∑
j=i

Wij · (|∆xoij −∆xnij |+ |∆yoij −∆ynij |)

+ γ1 ·
|C|∑
i=1

∆θi + γ2 ·
|net|∑
m=1

HPWL(x, y, θ), (2)

s.t. θi ∈ {0◦, 90◦, 180◦, 270◦}, ∀i ∈ C, (3)

where γ1,2 are hyperparameters that balance the relative im-
portance of placement variation and HPWL. For component
i and j, the offset variations before and after migration
are denoted by (∆xoij ,∆y

o
ij) and (∆xnij ,∆y

n
ij), respectively.

∆θi denotes the rotation variation of component i. The
objective minimizes offset variations between components,
rotation variations, and HPWL, so as to retain the original
placement characteristics as much as possible in the modified
board frame with obstacles.

xproji = |li · cos(θi)|+ |wi · sin(θi)|, (4)

yproji = |li · sin(θi)|+ |wi · cos(θi)|, (5)

|∆xij | ⩾
xproji + xprojj

2
+ s, (6)

|∆yij | ⩾
yproji + yprojj

2
+ s, (7)

where s denotes the minimum spacing required between
components. To component i, xproji is the projection on the
x-axis, and li and wi are the length and width. The above
constraint ensures that each component cannot overlap with
any other component or obstacle.

d+
xproji

2
⩽ xi ⩽ X − d− xproji

2
, (8)

d+
yproji

2
⩽ yi ⩽ Y − d− yproji

2
, (9)

where d denotes the minimum spacing required between
the component and the boundary. As for the board frame,
the lower-left corner is located at (0, 0) and the upper-right
corner is located at (X,Y ). The above constraint ensures

that each component is placed within the board frame.
However, the efficiency of directly using the solver to

solve the above MILP problem is very low. To acceler-
ate the placement migration while ensuring performance,
we proposed a relaxation and legalization strategy. PCB-
Migrator initiates the placement migration by relaxing the
angle constraint (3), converting the angles into continuous
variables, that is θi ∈ [0◦, 360◦]. So the MILP is converted
to several LP problems. These relaxed LPs allow partial
overlap between components and continuous rotation angles
in the preliminary placement. In the LP solution, PCB-
Migrator identifies the unplaced component with the smallest
x- and y-coordinates. During the legalization process, for
the current component, a hybrid grid search combining
coarse and fine steps is then performed around the position
solved by the LP to identify a feasible placement. For
each candidate position, all four possible rotation angles
are attempted. After a valid position and angle are found,
both the position and angle are fixed and added as extra
constraints to the original LP model. This process is repeated
iteratively until all components are well placed, as shown in
Fig. 4.

With the help of the above relaxation and legalization
strategy, the solution speed of PCB-Migrator in the place-
ment stage is significantly improved, while the placement
results achieve high-quality approximations of the global
optimal solutions, which will be shown in detail in the
experimental section.

B. Routing Migration
Routing Path Graph Generation from Placement. Due to
changes in the PCB boundary and the addition of obstacles,
the position and angle of individual components may change
significantly after placement migration. Therefore, directly
using the coordinates of the original routes for migration
will lead to misalignment. To preserve the characteristics
of the original PCB routing as much as possible while
ensuring rotation invariance and robustness, we transform the
placement of both the referenced and the new placement into
routing path graphs to guide the following routing migration
instead of using coordinates directly.

Specifically, the routing path graph consists of three types
of nodes: component nodes, pad nodes, and grid nodes.
Each component on the PCB corresponds to a component
node and is connected with all its corresponding pad nodes.
Each grid node represents a square area within the board
frame. Generally, areas with denser pads usually include
more fine-grained routing characteristics, so the square grids
in these regions are divided into finer granularity to improve
the accuracy of routing migration. If a grid overlaps with
a component or pad, the node corresponding to this grid
will establish an edge with the component or pad node.
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Fig. 5 Routing path graph generation and graph matching in the case of multi-layer PCB layout.
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Fig. 6 (a) Example of neighborhood connection calculation.
To the grid node A, 3 steps are required to reach pad
node B (the red path), so the corresponding value is (tp)

3.
Similarly, 2 steps are required to reach component node C
(the blue path), so the corresponding value is (tc)

2. (b) Pad-
dense area with fine-grained routing characteristics (shown
in red). Regular routing area between components, with
coarse-grained routing characteristics (shown in blue).

In addition, the grid node will establish edges with all the
adjacent nodes in all three dimensions, in order to support
routing migration for multi-layer PCB layouts. Through this
method, we establish a graph structure without coordinates to
perform routing migration, as shown in Fig. 5. The routing
path graph exhibits rotation and symmetry invariance, en-
abling it to handle challenging routing migration situations.

In the proposed routing path graph, component and pad
nodes serve as references to guide the subsequent graph
matching process. PCB-Migrator will extract the endpoints
of each wire segment in the referenced layout and project
them to the corresponding positions in the new PCB. Be-
cause all wires exist in the areas corresponding to the grid
nodes, we propose using neighborhood connections of these
grid nodes to extract the original routing characteristics.
The total dimension of the neighborhood connections is
determined by the sum of the number of components and
the number of pads. We apply breadth-first search (BFS)
starting from the current grid node to identify reachable
component nodes or pad nodes within a specified search
range. Specifically, for a component or pad, x{c,p} denotes
the number of BFS steps required to reach the component
or pad from the current grid node, and t{c,p} represents
the decay coefficient, then the corresponding value of the
neighborhood connection f{c,p} is calculated as Fig. 6(a)
and following equation:

f{c,p} = (t{c,p})
x{c,p} , t{c,p} < 1, x{c,p} < xmax

{c,p}, (10)

where xmax
{c,p} is the maximum BFS steps allowed for reaching

components or pads. If a component or pad cannot be
reached within the specific number of steps, its value is 0.

However, the depth of the two BFSs to the component and
pad must be set differently. In PCB layouts, components are
typically spaced farther apart than pads, resulting in coarse-
grained routing characteristics where connections span larger
distances, as shown in Fig. 6(b). Therefore, we employ a
deeper BFS to build the neighborhood connections for com-
ponents, enabling the extraction of coarse-grained routing
paths between components. Conversely, typically clustered
in small areas and have smaller physical dimensions, result-
ing in fine-grained routing characteristics where connections
are confined to shorter distances, as shown in Fig. 6(b). To
capture the neighborhood connections for pads, we must use
a smaller BFS depth, denoted as xp, compared to the depth
used for components, denoted as xc. Thus, xp < xc.

Through this method, both coarse-grained and fine-grained
routing characteristics are accurately captured in the neigh-
borhood connections of grid nodes. This enables flexible and
robust routing migration.
Routing Path Graph Matching. In order to map the routing
result of the referenced PCB to the new PCB with the
neighborhood connections of the grid nodes in the routing
path graphs, we need to perform a graph matching process.

Since the neighborhood connections of grid nodes are
already represented as vectors, cosine similarity is used to
match grid nodes from the original and new PCB placement.
Because the connection relationship between grid nodes and
the component nodes and pad nodes as references has been
represented in the neighborhood connections, the routing
migration problem can be decomposed into multiple bipartite
graph matching problems by layer, as shown in Fig. 5 and
the following formulation:

max

|No|∑
u=1

|Nn|∑
v=1

cos(u, v) · xuv,

s.t.
|Nn|∑
v=1

xuv = 1, ∀u ∈ No, xuv ∈ {0, 1}, ∀u, v,

(11)

where u and v represent grid nodes from the original and
new routing path graphs, respectively. No and Nn are the
complete collections of nodes in the original and new routing
path graphs. xuv is a binary variable indicating whether node
u and node v are matched.

During the extraction of neighborhood connections, only
grids containing endpoints of wire segments are involved,
as they contain key information about the original routing
characteristics. Under this setup, the number of nodes in
the original routing path graph is less than that of the new
routing path graph, which means that each node of the
original routing path graph can correspond to one node in



TABLE I Benchmark statistics.

Case
Referenced Layout Boundary Obstacles

WL / Via ↓ IL ↓ XT L (%) W (%) Num Area (%)
P1 1300.7 / 44 3.63 -45.19 +36.42 -17.11 2 8.92
P2 1043.2 / 37 1.51 -42.73 +5.00 -12.20 1 5.62
P3 681.6 / 33 1.62 -35.44 -10.91 +21.43 1 15.97
P4 3721.3 / 166 3.26 -44.38 0.00 0.00 3 1.76
P5 1743.4 / 37 4.27 -43.32 +24.14 -26.89 2 4.47
P6 309.1 / 8 5.07 -38.17 -38.00 -18.18 4 14.91
P7 1125.6 / 72 5.43 -41.89 0.00 -33.21 2 5.71
P8 579.5 / 19 4.10 -44.81 -38.00 0.00 1 9.34
P9 257.3 / 16 1.51 -42.03 -16.84 0.00 2 3.36

P10 1523.7 / 99 1.67 -50.81 0.00 -12.73 4 2.17
P11 1245.8 / 34 2.95 -43.22 -7.17 -10.27 4 5.25

the new routing path graph with the highest similarity, that
is No < Nn, which ensures that the bipartite graph matching
can be performed correctly. In PCB-Migrator, the Kuhn-
Munkres algorithm is employed to solve this bipartite graph
matching problem.
Guided Detailed Routing. Following the graph-based
global routing, PCB-Migrator generates approximate routing
paths that serve as guidance for A* search-based detailed
routing. These preliminary paths are subsequently utilized
to formulate a refined cost map for detailed path explo-
ration. PCB-Migrator reduces the cost of the area within
the rectangle formed by two adjacent matched grid nodes
from the same net, thus guiding the detailed routing. The
performance of graph matching may degrade significantly
in the top or bottom layers with very few components due
to the limited availability of reference nodes. Therefore, as
shown in Equation (12), we determine the minimum value
of the modified cost based on the number of components in
the current layer. Specifically, layers with fewer components
are assigned a lower minimum cost to prioritize routing
flexibility and maintain routing quality during migration.
In addition, for multi-layer PCBs, since there will be no
components in the middle signal layers, we use η to adjust
the minimum cost of the cost map:

Υ l
min = (e−

|Cl|
ψ + η) · Υb, (12)

Υ l(d) =
Υ l
min + Υb

2
− Υ l

min − Υb
2

cos(
πd

dmax
), (13)

where Υ l
min and Υb represent the minimum cost of matched

grid on layer l and the base cost, respectively. ψ, α and
β are hyperparameters to adjust the cost. Cl represents the
complete collection of components on layer l. Equation (13)
defines the cost of any location within the maximum dis-
tance dmax from the location with the minimum cost. This
ensures smooth transitions in the cost map, enhancing the
effectiveness and robustness of detailed routing.

IV. EXPERIMENTAL RESULTS

A. Experiment Setting
We implement PCB-Migrator in C++, and Gurobi [25] for
linear programming solving. The Boost C++ library [26] is
used to perform geometric computations within our proposed
algorithm. We run all the experiments of PCB-Migrator on
a Linux server with 76 Intel Xeon CPU cores.

In the process of constructing the OCG, the distance
threshold is set as 30 mm. As for the calculation of neigh-
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Fig. 8 Comparison of placement between our PCB-Migrator
and the baseline on (top) runtime and (bottom) cost.

borhood connections, the maximum search steps xmax
c and

xmax
p are set as 30 and 15, the decay coefficients tc and tp

are set as 0.6 and 0.8. The rip-up and reroute processes are
performed 5 times.

B. Benchmarks, Baselines and Performance Evaluation

All PCB layout benchmarks are from OpenROAD [22]
and real-world industrial applications. To simulate real PCB
migration scenarios, we modify the boundaries and add
extra obstacles to each benchmark, as listed in TABLE I.
Compared with the referenced layouts, the PnR of all the
benchmarks is significantly more challenging. Consequently,
directly transferring the referenced layout results to the new
board frames is infeasible.

The baselines in our experiments are as follows:

1) PCB-PR-App [17]: an open-sourced and effective frame-
work for PCB PnR, released by OpenROAD [22], com-
posed of SA-PCB [19] and PcbRouter [18]. The PnR
process is implemented using simulated annealing and
A* search, respectively.

2) NS-Place [7] + Freerouting [21]: NS-Place [7] is a popu-
lar framework for general PCB placement that reduces net
congestion to enhance routability. And Freerouting [21]
is a powerful, fully autonomous PCB routing software
that can be integrated into Kicad [27].

3) DeepPCB [20]: a powerful commercial tool for PCB PnR
based on reinforcement learning; its placer and router
leverage lots of design experience through learning.

The design rule checks of all PCB layouts are performed
by Kicad [27]. Keysight ADS [28] is used to simulate the
key electromagnetic indicators of PCB layouts: insertion loss
(IL) and crosstalk (XT) [2]. These two metrics are both
expressed in decibels in our experiments.



TABLE II Performance comparison of PCB layout design.

Case
PCB-PR-App [17] NS-Place [7] + Freerouting [21] DeepPCB [20] PCB-Migrator (Ours)

WL / Via
EM Perf.

RT (s) WL / Via
EM Perf.

RT (s) WL / Via
EM Perf.

RT (s) WL / Via
EM Perf.

RT (s)
↓ IL ↓ XT ↓ IL ↓ XT ↓ IL ↓ XT ↓ IL ↓ XT

P1 1765.6 / 153 7.38 -33.20 340 1510.9 / 63 7.29 -33.42 10992 1197.3 / 49 9.34 -37.16 12761 1136.0 / 37 4.27 -37.35 180
P2 1205.7 / 73 2.73 -38.51 182 1035.1 / 65 3.68 -37.11 6331 990.6 / 43 5.61 -40.63 5772 895.7 / 28 1.80 -41.04 68
P3 760.0 / 53 2.31 -34.81 164 552.1 / 26 5.45 -34.48 5109 729.6 / 37 6.01 -34.83 4433 553.8 / 18 1.72 -35.23 55
P4 4400.5 / 205 5.89 -39.29 657 3358.9 / 140 6.57 -29.49 11466 3705.2 / 101 6.63 -36.65 7128 3231.6 / 114 3.69 -40.33 941
P5 1701.7 / 49 8.31 -38.66 558 1881.2 / 74 8.71 -29.30 7825 1524.3 / 50 9.56 -38.71 6312 1515.1 / 44 5.85 -40.56 280
P6 650.7 / 38 11.71 -35.20 105 1018.8 / 42 7.18 -35.89 2869 688.0 / 29 7.08 -36.41 4238 541.0 / 37 6.62 -37.22 74
P7 1484.9 / 85 8.22 -39.91 500 1525.6 / 67 11.11 -40.24 10751 1389.7 / 37 8.82 -40.48 8985 990.0 / 20 6.42 -41.16 90
P8 694.3 / 11 8.15 -36.26 140 1120.9 / 85 8.27 -36.18 11568 918.0 / 25 9.89 -37.18 9620 584.6 / 18 5.33 -38.40 57
P9 737.3 / 19 2.22 -37.63 147 914.4 / 37 2.32 -30.52 3248 988.8 / 26 2.10 -38.78 6957 333.2 / 21 1.71 -40.60 61

P10 2171.6 / 137 2.81 -42.87 836 2096.9 / 109 3.41 -38.73 19856 1950.2 / 51 7.08 -44.10 9282 1880.1 / 87 1.97 -45.60 152
P11 1244.3 / 28 8.63 -34.59 166 1329.6 / 65 8.20 -34.42 5495 1364.4 / 47 9.71 -34.09 5674 1382.4 / 21 3.77 -35.53 129
Avg. 1528.78 / 77.36 6.21 -37.36 344.92 1485.85 / 70.27 6.56 -34.53 8682.73 1404.19 / 45.00 7.44 -38.09 7378.36 1185.77 / 40.45 3.92 -39.37 189.69

C. Migration Performance
The overall results of PCB migration on all benchmarks
are shown in TABLE II. Because the boundaries of PCB
benchmarks are compressed and there are additional obsta-
cles, the difficulty of placement and routing is significantly
increased. Compared with the three baselines, our PCB-
Migrator achieves an average speedup of 1.8×, 45.9×,
39.1× separately. Moreover, PCB-Migrator can route with
22.4%, 20.1%, 15.6% fewer wirelength and 48.1%, 42.8%,
11.1% fewer vias than PCB-PR-App [17], NS-Place [7]
+ Freerouting [21], DeepPCB [20], respectively. The main
reason for achieving such great performance with a shorter
runtime is that we migrated the better PnR characteristics
from the expert-level layout, rather than just blindly per-
forming optimizations through conventional metrics.

Simulation results of EM performance are shown in TA-
BLE II. Our PCB-Migrator is significantly better than all
three baselines in all situations, achieving an average reduc-
tion of 36.8%, 40.2%, 47.3% in IL and 5.4%, 14.1%, 3.4% in
XT, respectively. Even compared with the referenced layout,
PCB-Migrator retains 81.2% on IL and 92.6% on XT of the
original performance. Fig. 7 shows that the IL and XT of our
PCB-Migrator are much better than any other baseline and
are very close to those of the referenced layout. The reason
our PCB-Migrator achieves expert-level EM performance is
that it migrates from expert-level layouts, preserving the
excellent PnR characteristics and design styles. The above
results demonstrate that PCB-Migrator can achieve excellent
EM performance close to that of the expert results.

To verify the effectiveness and efficiency of PCB-Migrator
in placement, we compared the cost and runtime of PCB-
Migrator and MILP by Gurobi [25], as shown in Fig. 8.
PCB-Migrator achieves legal placement while requiring only
5.56% of the runtime and attains 110.51% cost compared
with MILP. Notably, on the benchmark P4, PCB-Migrator
achieves a cost that is 16.29% lower than MILP. This is
because MILP reached its maximum solution time and was
unable to converge to the optimal solution. The above exper-
iment results denote that PCB-Migrator can achieve highly
optimal placement results with a much shorter runtime.

Fig. 9 shows the migration result of P5, a relatively com-
plicated benchmark with multiple layers. The objective of
the “design-from-scratch” frameworks is usually to optimize
without considering the potential impacts on performance
and usability. As a result, the layouts generated by PCB-PR-
App [17], NS-Place [7] + Freerouting [21], and DeepPCB
[20] contain more unreasonable design styles, which will

(a) Referenced PCB layout

(b) PCB-Migrator (Ours)

(c) PCB-PR-App

(d) NS-Place + Freerouting

(e) DeepPCB

Fig. 9 Comparison between the referenced P5 layout and mi-
grated layouts from our PCB-Migrator and other baselines.
PCB-Migrator’s layout is highly similar to the reference and
more reasonable, resulting in improved EM performance.

negatively impact performance. It is evident that the result
of our PCB-Migrator retains the characteristics of the refer-
enced PCB to a great extent and is significantly better than
that of all other baselines. The results shown in Fig. 9 clearly
illustrate the effectiveness of our proposed PCB-Migrator;
expert-level PnR is the reason for its better performance.

V. CONCLUSION

This paper proposed PCB-Migrator, the first PCB PnR mi-
gration framework. In placement migration, PCB-Migrator
extracts the positional relation between components of the
referenced PCB to construct an offset constraint graph.
With this graph, PCB placement is formulated as an MILP
problem and solved in a speedup strategy to significantly
improve computational efficiency. As for routing migration,
PCB-Migrator generates routing path graphs for both the
referenced and new layouts, and performs graph matching
to guide detailed routing to complete PCB PnR migration.
Experimental results demonstrate that PCB-Migrator can
generate migrated PCB layouts with highly similar design
characteristics and electromagnetic performance to the ref-
erenced PCB effectively and efficiently.
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