
Efficient Multi-Array Parallel Scheduling for
In-Memory Computing

Rongliang Fu†, Ran Zhang†, Libo Shen, Wei Xuan, Ning Lin, Junying Huang∗, Bei Yu,
and Tsung-Yi Ho Fellow, IEEE

Abstract—In-memory computing (IMC) for logic functions
executes a target function via a series of logic operations
supported by peripheral devices. Because these operations are
performed on multiple memory rows in lockstep, this paradigm
follows a single-instruction multiple-data (SIMD) style. Existing
multi-array schedulers mainly focus on reducing copy instruction
lines but often overlook array-level parallel scheduling. This
paper presents MAPSIM, an efficient multi-array parallel SIMD-
IMC scheduler that reduces both copy instructions and execution
cycles. To alleviate input congestion, we model input assignment
as a bipartite-graph partitioning problem to optimize input dis-
tribution across arrays. For multi-array parallel scheduling, we
represent the data state of each array in a state-transition graph
and assign each state a scheduling potential energy. The sched-
uler then greedily selects actions that maximize instantaneous
energy gain. To accelerate state transitions, we further employ
priority-queue filtering and maximum-weight matching to select
optimal, feasible actions per cycle. Experimental results on EPFL
benchmarks demonstrate the effectiveness and efficiency of our
framework. MAPSIM reduces execution cycles by 23.43% and
copy instructions by 19.78% over the state-of-the-art, while
achieving a 15.02× speedup in runtime. Our code and data are
available at https://github.com/Flians/MAPSIM

Index Terms—in-memory computing, SIMD, multi-array
scheduling, XOR–majority graph, parallel scheduling

I. INTRODUCTION

THE von Neumann bottleneck has long been recognized
as a major limitation to the advancement of computer

systems [1], primarily due to the significant energy over-
head associated with frequent data transfers between memory
and processor. To address this challenge, various alternative
computing paradigms have been explored, among which in-
memory computing (IMC) architectures have attracted con-
siderable attention. Several IMC-based architectures have been

The research work described in this paper was conducted in the JC STEM
Lab of Intelligent Design Automation funded by The Hong Kong Jockey Club
Charities Trust and was supported in part by the Research Grants Council of
Hong Kong SAR (Grant No. CUHK14207523), and in part by the National
Natural Science Foundation of China (Grants No. 62302477).

Rongliang Fu, Libo Shen, Bei Yu and Tsung-Yi Ho are with the
Department of Computer Science and Engineering, The Chinese Uni-
versity of Hong Kong, Hong Kong 999077, China. E-mail: {rlfu, lb-
shen24, byu, tyho}@cse.cuhk.edu.hk.

Ran Zhang and Junying Huang are with the State Key Lab of Processors,
Institute of Computing Technology, CAS, Beijing 100190, China. E-mail:
{zhangran23s, huangjunying}@ict.ac.cn.

Wei Xuan is with the ACCESS – AI Chip Center for Emerging Smart
Systems, InnoHK Centers, Hong Kong Science Park and the Hong Kong
University of Science and Technology, Hong Kong, China. E-mail: weix-
uan@ust.hk.

Ning Lin is with the University of Hong Kong, Hong Kong, China. E-mail:
linning@hku.hk.

† Equal contribution. ∗ Corresponding author: huangjunying@ict.ac.cn.

Serial

 XOR

Copy to B

 MAJ

Parallel

Copy to B

 XOR MAJ

A

a

b

c

B

d

MAJ XORM X
M

a

c

d
0

f

b
X

e

2 Cycles3 CyclesArrays with and

Fig. 1. Comparison of serial vs. parallel multi-array scheduling
sequences.

designed for logic computing tasks [2]–[4]. These architectures
typically employ a single instruction multiple data (SIMD)
execution model, where a single instruction simultaneously
controls operations across multiple memory rows, enabling
efficient logical computations. However, due to limitations
in peripheral circuitry, IMC architectures generally support
only a restricted set of logic operations. Consequently, the
input Boolean network must first be transformed into a repre-
sentation compatible with SIMD-IMC architectures, typically
through logic synthesis tools. The synthesized Boolean net-
work is then fed into a scheduler, which generates a scheduling
sequence S. Each action in S specifies detailed execution
parameters, including the target vertex, its location, and the
type of the operation, collectively forming the instruction set
for SIMD-IMC. In essence, the scheduler translates a Boolean
network into an executable instruction sequence optimized for
SIMD-IMC.

In recent years, numerous schedulers have been proposed
to optimize different performance metrics. These schedulers
broadly fall into two categories: single-array schedulers, which
focus on scheduling within a single memory array, and multi-
array schedulers, which leverage parallelism across multiple
arrays. Single-array schedulers remove the characteristics of
physical devices and primarily aim to minimize hardware
resource usage for implementing logical functions within
one array [3], [5]–[7]. While these methods are relatively
straightforward and often effective, their abstraction neglects
device-specific constraints, potentially leading to resource in-
efficiencies in practice.

In contrast, multi-array schedulers like MASIM [8] explic-
itly consider the capacity limits of SIMD-IMC architectures
and introduce algorithms for scheduling across multiple arrays.
Their optimization objective shifts from minimizing the mem-
ory footprint to reducing the number of duplicated instruc-
tions during scheduling, a goal more aligned with reducing
energy consumption in real applications [3], [9]. MASIM [8]
further improves performance by incorporating randomization

1

https://github.com/Flians/MAPSIM

and multithreading to reduce copy instructions and accelerate
scheduling.

Despite the encouraging progress made in these efforts, they
still suffer from several limitations. Firstly, although some
schedulers employ multi-array scheduling techniques, they do
not account for parallelism at the array level. These works
emphasize executing one instruction in one array within one
cycle, without considering that, in actual situations, different
instructions can be executed between arrays in the same cycle.
For example, as illustrated in Fig. 1, the initial states of
two arrays A and B are depicted on the left, while the
Boolean network to be scheduled is shown in the center. By
exploiting multi-array parallelism, one execution cycle can be
eliminated, thereby improving scheduling efficiency. Secondly,
these approaches merely assign the primary inputs (PIs) of the
Boolean network in a serial manner, which tends to induce
congestion in a single array at the initial stage of scheduling,
thereby negatively impacting the overall scheduling process.

This paper proposes MAPSIM, an efficient multi-array
parallel scheduler for SIMD-IMC to address the problems
outlined above. By partitioning input features into a bipartite
graph, MAPSIM effectively alleviates initial array congestion
and enhances parallelism. Leveraging a combination of greedy
search and maximum-weight matching algorithms, MAPSIM
achieves near-optimal scheduling in each SIMD-IMC cycle.
Overall, our contributions are as follows:

• An efficient multi-array parallel scheduler that reduces
the number of copy instructions and execution cycles.

• A novel bipartite graph construction method for input
features, which mitigates input congestion and establishes
a good initial state for subsequent scheduling.

• A scheduling potential energy calculation method that
guarantees transition feasibility for any vertex within the
state transition graph.

• An optimal state selection method based on priority
queues and maximum-weight matching, significantly re-
ducing the computational overhead of exhaustive state
enumeration.

• Experimental results show that MAPSIM reduces 23.43%
of execution cycles, 19.78% of the number of copy
instructions, and achieves a 15.02× speedup compared
to the state-of-the-art scheduler.

The remainder of the paper is organized as follows. Sec-
tion II presents preliminaries on IMC, scheduling, and related
graph algorithms. Related work is discussed in Section III.
Section IV formulates the problem and highlights its chal-
lenges. Our methodology is detailed in Section V, followed
by a comprehensive evaluation of MAPSIM in Section VI.
Finally, Section VII concludes the paper.

II. PRELIMINARIES

A. Compute In Cache

Processor caches are built from SRAM arrays and are
positioned closest to the CPU core to leverage the principle
of data locality. The compute-in-cache paradigm [10]–[13]
modifies part of the cache by enabling computation directly
within the SRAM fabric itself to receive data-intensive tasks

Truth table

Peripherals

A
rr

ay
 C

on
tro

lle
r

W
L

 D
ec

od
er

....SRAM
Array

WLA

GBL

Array Array Array Array

Array Array Array ArrayC
on

tro
lle

r

N Code MAJ XOR
0 000 0 0
1 001 0 1
2 011 1 0
3 111 1 1

WLB

BLB

BL

GBL

SA
....

MAJ

XOR

M
U

X

Opcode

Fig. 2. IMC hardware architecture. (SA: sense amplifier, N: number
of ‘1’s, Code: thermometer code of SA output voltage).

allocated by the CPU, thereby reducing the overhead asso-
ciated with data movement. A global controller translates
CPU instructions into a series of micro-instructions, which
are then dispatched to the corresponding cache arrays. To
achieve multi-array parallelism, the wordlines (WLs) driver
in each array can be replaced by a local controller, primarily
implemented using a finite state machine (FSM), that orches-
trates the micro-operations required to realize specific macro-
instructions. Through state transitions and output logic, FSMs
generate cycle-by-cycle control signals to drive the SRAM
arrays for computation.

This can be achieved through minor modifications to the
SRAM’s row decoder to allow for simultaneous activation
of multiple WLs in a single clock cycle. Furthermore, by
employing a Transpose Memory Unit (TMU) to dynamically
reorganize the data layout, the design enables efficient row-
wise computation with only a 7.5% area overhead [11]. As
shown in Fig. 2, the green rows are activated operands.
By leveraging physical phenomena like charge sharing on
the shared bitlines (BLs) of these activated rows, massively
parallel bitwise logical operations (e.g., AND, XOR, Majority)
can be executed in-place. A two-level control architecture
enables parallel operations across multiple arrays, as shown
in Fig. 2. The CPU sends commands to a central global
controller, which directs individual array controllers. Equipped
with an FSM, voltage generator, latches, and a datapath, these
local controllers coordinate with the WL decoder to perform
logical computations on specific rows. This design effectively
converts the cache into a massively parallel high-throughput
SIMD engine with ∼ 10% area overhead [11] to achieve KB-
scale data parallelism [10].

By performing computations in caches, this approach dras-
tically reduces data movement, directly mitigating the Von
Neumann bottleneck and yielding significant gains in both
energy efficiency and performance.

2

B. Logic in Memory

The logic-in-memory architecture in this work relies on
deep microarchitectural customizations of the memory array
[3]. We utilize dual-wordline 6T SRAM cells and modify the
row decoder to support concurrent multi-row activation. Dur-
ing computation, the two bitlines (BL and BLB) of each cell
are shortened together to form a single global bitline (GBL).
To efficiently implement complex applications on this SRAM
array, we adopt a logic synthesis methodology based on XOR-
majority graphs (XMGs) [14]. Compared with traditional And-
Inverter graphs (AIGs) [15], XMGs can represent arithmetic-
intensive functions with a significantly more compact repre-
sentation [16]–[18]. The fundamental logic primitives of an
XMG are the three-input Majority (MAJ(a, b, c)=(a∧b)∨(a∧
c) ∨ (b ∧ c)) and XOR operations, which are realized by a
unified circuit in hardware, as shown in Fig. 2.

When the CPU receives instructions related to IMC, it
forwards them to the global controller within our SIMD-IMC
architecture for coordinated execution. At the beginning of a
computation, the GBL is pre-charged to VDD. Subsequently,
the controller activates the wordlines of the three input
operands simultaneously. Crucially, based on the inversion
flags in the instruction, the controller independently selects
for each row whether to activate WLA (to access the true
value) or WLB (to access the inverted value). The activation
of a wordline turns on the corresponding access transistor,
causing the SRAM cell to conditionally discharge the GBL
according to its internally stored value. Consequently, the final
analog voltage on the GBL is determined by the total number
of discharging cells, i.e., the effective count of logical ‘1’s
in the inputs, thus creating four distinct and distinguishable
voltage levels. This analog voltage is captured by a custom
multi-level sense amplifier and converted by a built-in ADC
into a 3-bit “thermometer code” (e.g., 000, 001, 011, 111) [3],
[19]. Finally, this code is fed into two configurable logic units,
with the output selected by the instruction’s opcode: for MAJ
instructions, the output is ‘1’ if two or more inputs are ‘1’;
for XOR instructions, the output is ‘1’ if the number of input
‘1’s is odd.

C. Synthesis and Scheduling

Executing an application on our target architecture involves
two main stages: synthesis and scheduling. First, a given
function is synthesized into a Boolean network represented
as a directed acyclic graph (DAG). The vertices of this DAG
correspond to PIs, primary outputs (POs), and internal 3-input
XOR/MAJ logic operations supported by the hardware. The
edges represent the data dependencies between these opera-
tions. Next, a scheduler converts this DAG into a hardware-
executable instruction sequence. The computation proceeds
vertex-by-vertex, governed by the following critical hardware
constraints:

• Memory Integrity: The initial PIs cannot be overwritten,
as they may still be required when computing other func-
tions. However, copies of these PIs stored in other arrays
during scheduling can be safely overwritten. Similarly,
the computed POs must be preserved in memory once

Algorithm 1: Weighted Edmonds’ Blossom Algorithm.
Input: A weighted graph G(V,E,w).
Output: Maximum-weight perfect matching M .

1 Initialize matching M ← ∅;
2 Initialize dual variables y(v)← max(v,u)∈E

w(v,u)
2 ;

3 while ∃ unmatched vertex u ∈ V do
4 if No augmenting path and no change in y then
5 break;
6 Grow alternating forest from u using tight edges;
7 if found augmenting path P then
8 M ←M ⊕ P ; // Augment matching
9 else if found blossom B then

10 Shrink B to super-vertex;
11 else
12 Update y;
13 return M

scheduling is completed. In contrast, intermediate vertices
can be overwritten as soon as their results are no longer
needed for subsequent computations.

• Operand Locality: A logic operation (a vertex) can be
computed only if all of its fan-ins (FIs) reside within the
same memory array [20]. The output is then written
back to a designated row in that same array, and each
vertex can only be computed once.

This operand locality rule creates a central challenge: for
large networks that exceed the capacity of a single array, a
sophisticated multi-array scheduling strategy is required to
manage data placement and inter-array transfers. Developing
such a strategy is the core problem addressed in this paper.

D. Graph Algorithms

The graph algorithms critical to our multi-array parallel
scheduling method, namely maximum weight matching and
graph partitioning, will be described in detail below.

Maximum Weight Matching in Graphs: The maximum
weight matching is a classical optimization problem defined on
a weighted graph G(V,E,w), where V is the set of vertices,
E is the set of edges, and w : E → R assigns a weight to
each edge. A matching is a subset of edges, i.e., M ⊆ E,
such that no two edges in M share a common vertex in V .
The goal is to find a matching M∗ that maximizes the sum of
edge weights, i.e.,

M∗ = argmax
∑
e∈M

w(e). (1)

Depending on the properties of the graph, suitable algo-
rithms can be applied. For weighted bipartite graphs, the
Hungarian algorithm [21], [22] can be applied to find the
maximum weight matching, but for more general weighted
graph structures, the Edmonds’ Blossom algorithm [23] is
more applicable. The Edmonds’ Blossom algorithm operates
in polynomial time and guarantees the discovery of an optimal
matching. The complete procedural steps are presented in Al-
gorithm 1. Fundamentally, the Edmonds’ Blossom algorithm

3

Algorithm 2: METIS Algorithm.
Input: A graph G(V,E), partition number k.
Output: Partitions P .

1 while |V | is large do
2 G← Coarsen graph by contracting vertices;
3 P ← Compute initial k-way partition on coarse graph;
4 while graph is uncoarsened do
5 P ← Project partition to finer graph;
6 P ← Refine partition locally;
7 return P

addresses the dual problem of the original maximum weight
matching problem.

In this dual problem, the variable y represents the dual
variable associated with each vertex (line 2). For any pair of
vertices u and v, the dual variable y is required to satisfy the
following complementary slack conditions:

y(u) + y(v) + ΣB⊃{u,v}y(B) ≥ w(u, v),∀(u, v) ∈ E. (2)

We usually define slack(u, v) = y(u) + y(v) − w(u, v) +
ΣB⊃{u,v}y(B), and the edges with slack = 0 are defined
as tight edges, where y(B) indicates the dual variable of
a blossom B that is an odd-length alternating cycle. The
objective of the dual problem is to minimize the total value
of the dual variables, i.e., min

(∑
v∈V y(v)

)
. To achieve this,

the algorithm iteratively executes when an augmenting path is
found or the dual variable changes (lines 3-12). Specifically,
the algorithm performs a breadth-first traversal starting from
unmatched vertices, exploring tight edges to construct an
alternating tree, in which the edges along any path alternate
between being in M and not in M (line 6). When the
expansion reaches a vertex without an incident edge in the
current matching M , an augmenting path is found, and the
matching is updated by alternating the matched and unmatched
edges along this path (lines 7–8). Upon detecting a blossom,
the algorithm contracts it into a super-vertex and reinserts it
into G (lines 9–10). Otherwise, the alternating tree continues
to grow. This iterative procedure ensures consistent progress
toward optimality while maintaining feasibility with respect to
dual constraints.

When no augmenting path can be found, the algorithm
updates the dual variables y by decreasing them while sat-
isfying the constraint in Equation (2) (lines 11-12). This
update preserves feasibility while reducing the dual objective
function. The introduction of new edges that satisfy slack = 0
enables further exploration in subsequent iterations. The algo-
rithm terminates when neither additional augmenting paths nor
dual variable updates are possible, at which point an optimal
solution to both the primal and dual problems is achieved.

Graph Partitioning: Graph partitioning plays a crucial role
in managing design complexity and improving overall design
efficiency. Given a graph, the problem partitions the vertex
set into k disjoint subsets while simultaneously satisfying
two key objectives: the balance constraint and cut minimiza-
tion. The balance constraint requires that each subset has
approximately equal size, whereas cut minimization focuses

on reducing the total weight of the edges crossing between
different subsets. Owing to these properties, graph partitioning
has been extensively employed to address critical challenges
in physical design. Among various methods, METIS [24],
[25] has emerged as a widely adopted and highly efficient
partitioning algorithm. It leverages a multilevel partitioning
framework, as illustrated in Algorithm 2, and proceeds in
three main phases. First, the input graph is coarsened by
iteratively collapsing vertices and edges, yielding a smaller
yet structurally similar graph (lines 1–2). Second, an initial
partition is generated on the coarsened graph using simple
heuristics (line 3). Finally, the solution is projected back to the
original graph through an uncoarsening process, during which
refinement strategies are applied at each level to improve
balance and reduce edge cuts (lines 4–6). For a general k-
way partitioning problem, METIS often employs a recursive
bisection strategy, repeatedly applying the above three phases
until the required number of partitions is achieved.

III. RELATED WORK

Early scheduling techniques primarily targeted the optimiza-
tion of computations within a single memory array, with the
objective of minimizing resource consumption. Approaches
such as XMG-GPPIC [3], SIMPLER MAGIC [5], [26], as well
as [27] and [28], employed different strategies to reduce either
the number of logic gates or the required storage capacity.
Nevertheless, these single-array strategies become impractical
when applied to large-scale circuits that surpass the capacity
of a single array, as they fail to address the significant energy
overhead introduced by inter-array data communication.

To address the limitations of single-array designs, subse-
quent research advanced toward multi-array scheduling, with
the primary objective of reducing inter-array data movement,
particularly copy instructions. MASIM [8] represented one
of the first multi-array scheduling frameworks, emphasizing
the minimization of copy operations. Other approaches [6],
[7], [29] similarly sought to mitigate inter-array transfers,
either by partitioning circuits in a more structured manner
or by leveraging hardware resources more effectively. How-
ever, a fundamental limitation of these methods lies in their
lack of true parallelism, as they continue to execute only a
single instruction per cycle. Moreover, MASIM [8] depends
on randomized strategies, which results in non-deterministic
performance outcomes. In contrast, our proposed scheduler,
MAPSIM, achieves genuine parallel execution by enabling
the concurrent scheduling of multiple instructions, thereby
substantially decreasing both copy operations and overall
execution latency in a deterministic and consistent manner.

IV. PROBLEM FORMULATION

A. Terminology

A Boolean network usually can be regarded as a DAG,
which can be denoted as G(V,E). The vertex set V is typically
a collection of PIs, POs, and internal logic gates within the
Boolean network. The directed edge set E ⊆ V × V captures
the connectivity between vertices, where the orientation of an
edge represents the direction of data flow in the network. For

4

each vertex v ∈ V , let FIs(v) and FOs(v) denote its fan-in and
fan-out vertex sets, respectively. A directed edge (u, v) ∈ E
exists if and only if u ∈ FIs(v) (equivalently, v ∈ FOs(u)).
By definition, every PI has an empty fan-in set. The depth
of a Boolean network is defined as the maximum logic level
among all POs, while its size is the total number of vertices in
G. The logic level ι(v) of a vertex v is recursively determined
as

ι(v) =

0, if v ∈ PIs,
max

u∈FIs(v)
ι(u) + 1, otherwise. (3)

In the scheduling process, vertices whose FIs reside in the
array but have not yet been calculated are called candidate
vertices. Scheduling decisions, whether to execute copy or
computation instructions, are made exclusively based on these
candidate vertices.

A bipartite graph is a graph denoted by G = (U ∪ V,E),
where the vertex set is partitioned into two disjoint subsets U
and V such that U ∩ V = ∅, and every edge in E connects
one vertex in U with one vertex in V . Formally, for all edges
(u, v) ∈ E, we have u ∈ U and v ∈ V . Equivalently, the graph
G is bipartite if and only if it is 2-colorable; that is, there exists
a function col : U ∪ V → 1, 2 such that col(u) ̸= col(v) for
every edge (u, v) ∈ E. A fundamental property of bipartite
graphs is that they contain no odd-length cycles; conversely,
a graph without odd cycles is bipartite.

Due to their structural simplicity, bipartite graphs have
broad applications in computer science, operations research,
and related fields. Bipartite graphs are central to well-known
algorithms, such as the Hungarian algorithm for maximum
weight matching, which exploits the unique structural con-
straints of bipartite graphs to achieve efficient solutions.

B. Problem Formulation

The objective of MAPSIM is to schedule a given Boolean
network onto a specified SIMD-IMC architecture. The ef-
fectiveness of the scheduler can be evaluated from multiple
aspects. Our goal is to implement the logical functionality of
the Boolean network using as few execution cycles as possible
for a given number of arrays, while minimizing data movement
caused by copy instructions, which, as reported in [3], leads
to increased energy consumption. Hence, the optimization
problem addressed in this paper can be formulated as follows:
Input: • A Boolean network G(V,E).

• N : The number of arrays available.
• R: The number of rows in each array.

Output: A schedule sequence S.
Constraints: All actions in each cycle satisfy the scheduling

rules proposed in Section II-C.
Goal:

min
S∈S

(gcopy(S), gcycle(S)), (4)

where gcopy(S) and gcycle(S) represent the total number
of copy instructions and the total number of execution
cycles, respectively, under a given sequence S. The goal
is to determine the sequence S that optimizes both
gcopy(S) and gcycle(S).

TABLE I. Description of frequently used symbols.

Symbol Description

f Scheduling potential energy in the SIMD-IMC.
g Scheduling potential energy in each array.
α The reward of the input existing in the array.
β The penalty due to congestion in the array.
c The reward of computing vertices in the Boolean network.
ρ A small tuning parameter representing the potential benefit of

adding a vertex into the array.
maxfo Maximum fan-out for vertices in the Boolean network.

By addressing the scheduling task as a combinatorial opti-
mization problem, MAPSIM generates solutions that trade off
performance and energy, enabling designers to make informed
choices under various architectural and application constraints.

C. Challenge

Scheduling is inherently a challenging task, and multi-
objective scheduling optimization in a multi-array environ-
ment further exacerbates this complexity. The coexistence
of multiple optimization objectives imposes unprecedented
challenges on the scheduler. Firstly, it is essential to determine
the assignment of the PIs of the Boolean network within
the array, as this initialization step critically influences the
effectiveness of the subsequent scheduling process. Secondly,
the multi-objective nature of the problem necessitates careful
trade-offs between conflicting goals, as minimizing execution
cycles alone may lead to an increase in copy instructions in
some cases, thereby incurring higher data movement overhead
and energy consumption. Consequently, both objectives must
be jointly considered when designing scheduling strategies.
Finally, given that scheduling problems are generally NP-
hard, the scheduler must efficiently navigate the exponentially
growing search space to identify solutions that are as close as
possible to the optimal instruction sequence within acceptable
computational time.

V. METHODOLOGY

This section presents MAPSIM, a novel and efficient multi-
array parallel scheduler designed to effectively address the
challenges identified in Section IV-C. Specifically, Section V-B
details a bipartite graph-based input assignment method to
alleviate the congestion issues observed in prior work. Subse-
quently, Section V-C introduces a greedy scheduling procedure
that leverages the computation of scheduling potential energy
to navigate the complex state transition graph and determine
an effective scheduling path. Finally, Section V-D presents
an action decision strategy formulated using priority queues
and the maximum weight matching algorithm. Together, these
sections form an efficient and flexible framework capable of
effectively scheduling Boolean networks in a given number
of arrays. For clarity, the commonly used symbols in this
section are summarized in TABLE I. These symbols serve as
the foundation for the subsequent formulations and analyses,
facilitating a clearer understanding of the proposed method.

5

M
M

X

M
M

0

0

...

...

a
b

c
d

...
...

M

e ...

X

f ...

M

g ...

Each
Cycle

Partition
Graph

a

f

e

d

c

b

g

Filter

arr1

arr2 arr3

arr4 arr5

arr6arr1'

arr2'

arr5'
Peripherals

PeripheralsPeripherals

...

...

......

Peripherals
PeripheralsPeripherals

...

...

Peripherals
Peripherals ...Peripherals

Copy

... ...

Fig. 3. MAPSIM overall flow.

...

...

Peripherals

Peripherals
Peripherals

Copy

...

(a)

...

...

Peripherals

Peripherals
Peripherals

Copy

...

(b)

...

...

Peripherals

Peripherals

...

Peripherals

(c)

Fig. 4. Different input assignment methods with (a) serial assignment,
(b) balanced assignment, and (c) partition assignment.

A. Overall Flow

The overall workflow of the proposed method is illustrated
in Fig. 3. In the initial stage, we address the input assignment
problem by employing an l-level input-feature bipartite graph
partitioning method, which will be proposed in Section V-B.
As shown on the left side of Fig. 3, the input vertices are
partitioned into two disjoint parts, a, b and c, d, enabling
independent access to multiple memory arrays and avoiding
read conflicts. Next, for each cycle, we utilize the scheduling
potential energy method introduced in Section V-C to evaluate
the component of the proposed scheduling potential energy.
This step aims to quantitatively measure how much each
action contributes to the progress of the computation. A greedy
strategy is then adopted to select the action combination with
the highest overall benefit, ensuring efficient utilization of
array-level parallelism. Finally, we apply the action selection
strategy proposed in Section V-D to determine the final action
combination for each execution cycle. Specifically, a selection
strategy is used by filtering them through a priority queue.
Then it employs a maximum weight matching algorithm to
select a set of non-conflicting, legal actions with the highest
cumulative weight. As illustrated on the right side of Fig. 3,
the red-highlighted vertices and edges represent the matched
edges with maximum weight and their corresponding vertices.
To ensure the strategy is compatible with hardware constraints,
a routing legalization step is performed, adapting the selected
action combination to various physical interconnect structures.
The following sections provide a detailed description of each
step of MAPSIM.

B. Input Assignment

The foundation of enhancing parallelism is the availability
of sufficient resources within each array to enable concurrent
execution across these arrays. This necessitates the distributed

Algorithm 3: Input Assignment Method.
Input: A Boolean network G(V,E), k, l.
Output: Input assignment I .

1 Vl ← {v | ι(v) = l, v ∈ V };
2 E′ ← {}, w′ ← {};
3 for n ∈ Vl do
4 for pi ∈ PIs do
5 E′ ← E′ ∪ {(pi, n)};
6 w′(pi, n)← The shortest path count from pi to n;
7 I ← Run METIS on G′(PIs ∪ Vl, E

′, w′) into k parts;
8 return I

storage of the PIs of the network across distinct arrays during
the initial phase. Fig. 4 illustrates three input assignment
strategies. In particular, [7], [8] adopt a serial assignment
approach, which results in severe congestion. The balanced
assignment method distributes inputs too sparsely, failing to
provide sufficient inputs for each unprocessed vertex within
each array for computation, thereby necessitating copying
rows from other arrays. To balance input congestion and
distribution sparsity, the input assignment must satisfy two key
criteria. First, each array should contain a sufficient number of
inputs to support the execution of unprocessed vertices. Sec-
ond, the additional overhead introduced by parallel scheduling
should be minimized.

It is impractical to perform some partitioning strategies
directly on the entire DAG, as the DAG exhibits a complex
structure of vertices and edges. In contrast, our objective is to
determine the assignment of PIs to specific arrays. To address
this challenge, this paper proposes an input-feature bipartite
graph assignment method, which is outlined in Algorithm 3.

First, the algorithm selects a specific set of vertices Vl,
which have no edges among themselves, together with all
DAG PIs, and denotes the vertices union as PIs ∪ Vl. Then it
constructs a bipartite graph that connects PIs exclusively to Vl,
serving as the input-feature bipartite graph G′(PIs∪Vl, E

′, w′)
for the DAG. This procedure is referred to as the l-level
method (lines 1–2). In a DAG, there are no edges between
two vertices at the same logic level ι, nor between POs.
However, since POs are typically far from PIs, using POs as
the other side of the input-feature bipartite graph may not
benefit scheduling, as scheduling is generally a local process.
As a result, we define Vl as

Vl = {v | ι(v) = l, v ∈ V }, where ∀l′ > l, |Vl′ | < R. (5)

For any vertex pi ∈ PIs and n ∈ Vl, there exists an edge

6

(pi, n) in the new edge set E′, whose weight w′ is defined
as the number of distinct paths from pi to n (lines 3-6). The
weight w′ of each edge in E′ reflects an estimate of the number
of copy instructions required if pi and n are placed in different
partitions. This assumption reflects the trend that if more paths
connect pi and n, their dependencies will be stronger, so we
need to allocate them to the same partition. However, since
enumerating all paths is computationally expensive, we only
compute the number of shortest paths from pi to n, which can
be efficiently obtained using a breadth-first search algorithm.
The algorithm then employs METIS [24], [25] to partition
the input-feature bipartite graph into k parts, denoted as I
(line 7). The value of k depends on the number of PIs, the
number of rows per array, and the size of the Boolean network.
Specifically, k is determined such that the inputs assigned to
each partition occupy approximately 1/4 or 1/2 of the array
capacity R, i.e.,

k =

⌈
4|PIs|
R

⌉
if |V | > Sizet else

⌈
2|PIs|
R

⌉
, (6)

where R denotes the number of rows per array, |V | is the
number of vertices and Sizet is a vertex count threshold.
When |V | > Sizet, more space is reserved in each array to
accommodate subsequent computations.

C. Multi-Array Parallel Scheduler

Scheduling in multi-array poses significant challenges, as
finding an optimal solution within polynomial time is generally
intractable. Nevertheless, heuristic approaches can often yield
promising results in both temporal and spatial dimensions.
This section proposes a greedy scheduling strategy. First, the
following concepts about the usage of the array are defined:

• Array State: describes the data state across all arrays of
the SIMD-IMC architecture at a certain cycle.

• State Transition: describes the state transition process
through the execution of a given set of instructions, which
are also called actions.

• State Transition Graph: describes all array states and
the possible transitions among them. In a state transition
graph, each node s represents a state, and an edge
between two nodes corresponds to a set of actions exe-
cuted within a single cycle, capturing the state transitions
induced by either computation or data movement. Each
node is associated with a property f , and each edge is
assigned a weight ∆f , defined as the difference of f
between the sink and source nodes.

As illustrated in Fig. 5, s0 denotes the initial state obtained
from Section V-B, and send denotes the state in which all
vertices in the Boolean network have been computed. Hence,
the scheduling problem becomes how to find a path from
the initial state s0 to the target state send while minimizing
the cost, i.e., the shortest path problem. To guide this search,
we introduce a metric termed the scheduling potential energy,
defined as

f(s) =
∑
v∈V

max
arr∈Arr

gv,arr, (7)

...

... ...

Fig. 5. State transition graph of the scheduler, where a shortest path
is highlighted in red.

where gv,arr represents the scheduling potential energy of
vertex v in the Boolean network with respect to a given array
arr. If there is an input vertex of v that has not been computed
in the SIMD-IMC architecture, then gv,arr = 0. Otherwise,
gv,arr is given by

gv,arr = αv,arr − βv,arr + cv,arr + ρv,arr, (8)

where αv,arr depends on the number of FIs to vertex v in arr,
and reflects the likelihood of computing v in that array; βv,arr

measures congestion in arr and indicates resource availability;
cv,arr quantifies the increase in scheduling potential energy
resulting from computing v (set to zero If v cannot be
computed in arr); and ρv,arr is a small tuning parameter that
represents the potential benefit of adding vertex v into arr.

As the state transition graph is huge, it is impractical to
traverse all array states. As an alternative, we use a greedy
method to select the next state st+1 at each step from the
current state st by maximizing the increase of f . This ensures
that, for each state st, at least one next state can be obtained.
In other words, the transition of each state can be viewed as
the partial derivative of the scheduling potential energy, which
can be defined as

∂f(st)

∂st+1,k
= f(st+1,k)− f(st) = ∆t,k. (9)

And the rule that we must obey is

max
k

∆t,k > 0. (10)

This implies that at least one path exists from s0 to send with
monotonically increasing potential energy when scheduling is
considered. As a prerequisite for the successful identification
of such a path, we analyze the computation of the parameters
α, β, and c under four distinct scenarios.

Case 1: The array arr may contain empty rows, and if not
all required FIs for computing the vertices are present in arr,
the corresponding FIs must be copied from other arrays (β =
0, c = 0). To support this operation, the reward factor αv,arr

is defined to vary with the number of FIs already present in
the array, satisfying α3

v,arr > α2
v,arr > α1

v,arr, where the
superscript is the number of FIs in arr. Fig. 6 illustrates an
example in this scenario. In arr, the FIs that have already

7

ab

d h

m
...

...

...

c

e
f i
a

M

M
X

M

M

Array arr

a

c

M Candidate List

m

h

...

i

Fig. 6. Example of Case 1: Selecting vertex m from the candidate
list requires copying vertex b from another array for computation.

ab

d h

m
...

...

...

c

e
f i
a

M

M
X

M

M

M Candidate List

m

h

...

i

Array arr

b

c

f

e Overwrite

Fig. 7. Example of Case 2: Selecting vertex m from the candidate
list for computation requires overwriting vertex e with copying vertex
a from another array.

appeared for m, h, and i in the candidate list are 2, 0, and 1
respectively, so m should be executed first. The next step is
to copy vertex b into arr.

Case 2: If the array arr contains no empty rows, no vertices
can be computed directly, and some rows in arr are replicated
in other arrays, a copy operation should be performed within
arr to enable future computation opportunities (β ̸= 0, c = 0).
In this case, overwriting any row from arr will result in a
significant change in the overall scheduling potential energy g.
In the worst case, each row contributes equally to g, so evicting
any row from arr results in the same loss. This implies that all
candidate vertices in arr share a common FI count, denoted
as |fi|. In this scenario, adding a row inevitably increases the
number of FIs associated with at least one candidate vertex,
which is reflected by an increase in its α value from α

|fi|
v,arr

to α
|fi+1|
v,arr , where the superscript denotes the number of such

FIs. On the other hand, evicting a row may decrease the
number of FIs associated with up to max fo candidate vertices,
each potentially experiencing a reduction in its α value from
α
|fi|
v,arr to α

|fi−1|
v,arr . Here, max fo denotes the maximum FOs

number among all vertices in this DAG. And in the worst
case, the congestion parameter remains unchanged during the
copy operation, as the number of occupied rows stays constant
(∆β = 0). To ensure that the overall potential energy gain
still satisfies the requirement of Equation (10), the increase in
readiness for the vertex v due to the added row must be at least
equal to the total readiness loss of all affected vertices u due
to the evicted row. That is, the updated readiness α|fi+1|

v,arr must
satisfy the inequality α

|fi+1|
v,arr ≥

∑
u∈maxfo

α
|fi|
u,arr. Based on

this relationship, we define the readiness factor αv,arr of a
vertex v in array arr as the proportion of its input count that
is already available in the array, which can be defined as

αv,arr = max
|fiv,arr|
fo , (11)

where |fiv,arr| means the input number of vertex v in array

ab

d h

m
...

...

...

c

e
f i
a

M

M
X

M

M

M Candidate List

m

h

...

i

Array arr

b

c

a

Fig. 8. Example of Case 3: Selecting vertex m from the candidate
list for computation in arr.

arr. Fig. 7 illustrates an example of this scenario, where
each vertex in the candidate list has two FIs in arr. arr
is congested, and vertex e has copies in other arrays. To
allow candidate vertices to be processed in arr, vertex e is
overwritten. Congestion is not alleviated, and the penalty β
remains unchanged. However, vertices m and i both receive
an increased α reward due to the addition of vertex a.

Case 3: When array arr contains available rows and all
the FIs to a vertex v are already present in the array, v can be
computed directly within arr (β = 0, c ̸= 0). In order to meet
the requirement specified in Equation (10), the computation of
this vertex must yield a positive profit, formally expressed as
c > 0. The influence of available rows on the computational
profit is captured by defining the profit c as a function of both
the structural readiness of the vertex and the storage flexibility
of the array. Specifically, the more available rows in arr, the
higher the potential for the scheduler to accommodate more
rows for future operations, thereby decreasing the benefit of
the computation of v in the current cycle. Hence, the profit c
is modeled as

cv,arr = max
max (⌈4×r/R⌉,2)
fo , (12)

where the parameter r denotes the number of rows occupied in
arr. When r is less than half of the total rows R, arr favors the
addition of more replicated rows, thereby enhancing its parallel
scheduling capability. Under this condition, the computational
benefit satisfies cv,arr < α3

v,arr. When r exceeds half but
remains below three-quarters of R, the computational benefit
increases moderately, reaching cv,arr = α3

v,arr. However,
when r exceeds three-quarters of R, arr begins to experience
congestion. At this stage, the scheduler should prioritize
vertices that can be computed directly within arr, resulting
in cv,arr > α3

v,arr. Fig. 8 illustrates an example of computing
a vertex. All FIs to vertex m are stored in arr, so vertex m
can be computed. Since the data capacity of arr is equal to
3
4 of the total capacity, the benefit of computing the vertex is
cm,arr = max3

fo.
Case 4: When array arr does not have available rows, and

none of its rows have replicas in other arrays, it becomes
necessary to evict a row to make one row available for further
scheduling (β ̸= 0, c = 0). In such scenarios, we prioritize
the execution of vertices that are immediately ready, whose
input number satisfies |fi| = 3. Accordingly, for vertices
with |fi| < 3, we expect their scheduling potential energy
gv,arr to be close to zero. In this situation, the inequality
βv,arr ≥ α2

v,arr must be satisfied, ensuring that the congestion
term β effectively suppresses scheduling when readiness is

8

Candidate List

m

h

...

i

Array arr

b

c

a

e

Array arr'

f

d

Evict

Fig. 9. Example of Case 4: Selecting vertex m from the candidate
list for computation requires evicting vertex e to another array.

insufficient. Now, assume all candidate vertices have |fi| = 3,
and consider the worst case where each row contributes
equally to the same number of candidate vertices, denoted as
|fo|. In this case, evicting any row will result in a decrease
of α, while causing an increase in β for at least |fo|× ⌈R/3⌉
candidate vertices, where R is the number of rows in arr. By
canceling the common factor |fo|, the condition to maintain a
non-declining overall scheduling potential energy simplifies to

βv,arr ≥
max3

fo

⌈R/3⌉
. This inequality guarantees that the reduction

in congestion, as measured by β, sufficiently compensates for
the loss in computational readiness represented by α during
row eviction. In other words, the scheduler must carefully
balance the trade-off between the decline caused by conges-
tion and the benefits of maintaining some data to optimize
scheduling performance. Failure to satisfy this condition could
lead to suboptimal scheduling decisions that degrade overall
efficiency. Based on this analysis, we define the calculation of
β as follows:

βv,arr = max

(
max3

fo

⌈R/3⌉
,max2

fo

)
. (13)

Fig. 9 illustrates an example in this scenario, where the
scheduling potentials g of three vertices m, h, and i in the
candidate list within this array are α3−β, α2−β, and α2−β,
respectively. Since β > α2, evicting e does not result in
a potential loss. For m, this action generates a gain of β,
allowing the scheduler to execute successfully.

Moreover, ρv,arr is a small tuning parameter that does
not affect the overall monotonicity of the scheduling metric.
Instead, it serves as a fine-grained adjustment to enhance the
screening capability when other parameters are identical or
similar. Specifically, it can be defined as

ρv,arr = |{u | u ∈ FIs(b) ∧ u ∈ arr, b ∈ FOs(v)}| , (14)

which represents the number of FIs with replicates in arr that
belong to the set of FIs of v’s fan-out nodes.

D. Action Decision

Although the greedy approach is employed to limit the
exploration of the state transition graph, the complexity of the
underlying scheduling rules described in Section II-C makes
it difficult to identify a set of legal actions to maximize the
f in each cycle. An action selection strategy based on the
maximum weight matching algorithm is proposed to address

Algorithm 4: Action Decision Algorithm.
Input: Action set A, candidate vertex set C, array set

Arr.
Output: Selected action set A′.

1 E ← {}, w ← {};
2 V ← Regard each arr ∈ Arr as a vertex;
3 A′ ← Filter A with max ∆f for each v ∈ C;
4 for a ∈ A′ do
5 if a is associated with computation instruction then
6 arr ← The array associated with action a;
7 Create a virtual vertex arr′ for arr into V ;
8 else
9 arr, arr′ ← The arrays associated with action a;

10 if (arr, arr′) /∈ E ∨∆f > w(arr, arr′) then
11 w(arr, arr′)← ∆f ;
12 E ← E ∪ {(arr, arr′)};
13 A′ ← Run maximum weight matching on Ga(V,E,w);
14 A′ ← Legalize actions in A′;
15 return A′

arr1

arr2

arr3

arr4

arr5

arr6

arr1'

arr2'

arr5'

Action Set

...

Replaced

Fig. 10. Action graph generation, where the red instruction replaces
the yellow instruction due to better gain.

this challenge. It efficiently approximates the optimal schedul-
ing decision while adhering to system constraints. First, the
following structure about action selection is defined:

• Action Graph: is introduced to determine the set of
actions for each cycle, denoted as Ga(V,E,w). Here,
V corresponds to the arrays or the virtual vertices
derived from them, such as arr and arr′. The edge
(arr1, arr2) ∈ E denotes a feasible action between ver-
tices arr1 and arr2, and the edge weight w(arr1, arr2)
quantifies the increase in potential energy associated with
the action.

The overall selection process is illustrated in Algorithm 4.
The input of the algorithm A is a set that contains all exe-
cutable actions in the current cycle. The following information
characterizes each action a ∈ A: (1) its instruction type
(either computation or copy), (2) the associated array(s), and
(3) the increment on f , denoted by ∆f . The objective is
to select a subset A′ ⊆ A of legal actions that maximizes
the increase of

∑
∆f . The vertices V in the action graph

Ga represent physical arrays, and additional virtual vertices
may be introduced to satisfy the constraints of the algorithm
(line 2). There is no doubt that A in each cycle is large.

9

To reduce its size, we first evaluate all actions associated
with each candidate vertex v ∈ C in the Boolean network
and only select the action that yields the largest increase in
scheduling potential energy, denoted max∆f , while other
actions in other arrays associated with this candidate vertex
will be discarded (line 3). This step ensures that each candidate
vertex will be considered in at most one action in the decision
period, effectively filtering redundant operations and reducing
computational overhead.

Subsequently, an action graph is constructed based on the
selected actions a (lines 4-12) to facilitate the application of
a maximum weight matching algorithm. For a computation
instruction that operates on a single array arr, a virtual vertex
arr′ is introduced to form an action pair (arr, arr′) (lines
5-7). This transformation enables computation instructions,
which inherently involve only one array, to be incorporated
into the matching framework defined over pairs of nodes. In
contrast, a copy instruction involves two arrays, denoted as
arr and arr′, which can be identified directly (lines 8-9).
If the edge does not exist or ∆f > w(arr, arr′), then an
edge is added between them with weight w(arr, arr′) = ∆f ,
indicating the benefit of executing this instruction (lines 10-
12). This construction encodes all actions into an action
graph representation, thereby facilitating the application of the
maximum weight matching algorithm to identify a subset of
actions that is both conflict-free and maximally beneficial for
execution in the current scheduling cycle. The procedure for
constructing an action graph is illustrated in Fig. 10. In this
graph, virtual vertices are marked with dotted lines, and edges
are generated by the algorithm based on the filtered action
sequence, establishing a one-to-one correspondence between
edges and actions. During graph construction, if an action with
a higher weighted benefit is scheduled to occupy the same
array, the existing action represented by the corresponding
edge is replaced, which is highlighted in red in the graph.

During the actual scheduling process, each array can only
execute one operation per cycle, which corresponds exactly
to the constraints in maximum graph matching. Since the
virtual vertices generated by the computation instructions
do not have edges with other vertices, the edges between
them can well reflect the scheduling benefits brought by the
computation of the vertices. Based on these, the algorithm then
applies the maximum weight matching algorithm mentioned
in Section II-D to find the best match in the action graph (line
13). Although the time complexity of the Edmonds’ Blossom
algorithm [23] is approximately O(|Va|3), we define Va as
the number of arrays, which is typically a small constant.
As a result, the computational overhead introduced by the
Edmonds’ Blossom algorithm is negligible in practice, which
significantly accelerates our scheduling procedure.

Finally, the selected action sequence is validated under dif-
ferent interconnection schemes (line 14). Because the proposed
maximum weight matching algorithm operates independently
of the underlying hardware routing constraints, a post-selection
validation step is required. This step filters the candidate action
set to ensure feasibility with respect to the specific inter-
connection architecture. The actual set of executable actions
may vary depending on routing limitations, such as bandwidth

700

1100

1500 4|PIs|/R 2|PIs|/R

ctr
l

ad
de

r

pri
ori

ty i2c max sqr
t

arb
ite

r
div

0
150
300
450
600 Sizet = 9000

N
um

be
r o

f C
op

y
In

st
ru

ct
io

ns

Fig. 11. Number of copy instructions of the two k-value selection
methods, with EPFL [30] circuits arranged in ascending order of
vertex count.

constraints, simultaneous access conflicts, or architectural re-
strictions on array connections. This validation ensures that the
final action set not only maximizes the scheduling potential
energy but also adheres to the physical constraints of the
system, thereby enabling practical deployment in real-world
hardware environments.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results of the pro-
posed MAPSIM framework. The framework was implemented
in C++ and evaluated using circuits from the EPFL benchmark
suite [30]. All experiments were conducted on a machine
equipped with an Intel(R) Xeon(R) Platinum 8350C processor
and 1.5 TB of memory. Due to execution constraints of periph-
eral devices [3], all Boolean networks were converted to the
XMG format before scheduling. This conversion is carried out
using the open-source logic synthesis and optimization library
mockturtle [31]. By applying the same transformation process
to all scheduling methods, we ensured structural consistency
across the Boolean networks, allowing for a more accurate
comparison of the intrinsic performance of the scheduling
algorithms.

A. Setting of Sizet value

In the input assignment strategy, selecting an appropriate
value of k is critical, as it directly affects the partitioning
outcome and consequently influences the subsequent schedul-
ing process. The choice of k is partially determined by
the parameter Sizet. To analyze this effect, we conducted
experiments using two distinct selection strategies. During
the experiments, k was fixed according to one of the two
calculation methods described in Section V-B to evaluate their
respective impacts. To more intuitively illustrate the rationale
behind our choice of Sizet, the circuits were sorted in ascend-
ing order based on the number of vertices. We selected eight
representative circuits that exhibited notably different results
on copy instruction count under the two selection methods of
k, and the corresponding outcomes are presented in Fig. 11.

As illustrated in Fig. 11, when the number of circuit vertices
is smaller than i2c, selecting the method k = ⌈2|PIs|/R⌉
significantly reduces the number of copy instructions. Con-
versely, when the number of circuit vertices exceeds sqrt,

10

TABLE II. Comparison results with different single-array schedulers.

Circuit R XMG-GPPIC [3] MAGIC [5] STAR [6] TCAD25 [7] [7]+IG [7]+Impr MAPSIM
Copy Cycle Copy Cycle Copy Cycle Copy Cycle Copy Cycle Copy Cycle Copy Cycle

int2float 16 252 451 220 419 222 421 211 420 105 304 179 378 151 211
router 64 188 389 170 371 169 370 176 377 88 281 152 353 46 221
cavlc 64 421 1021 205 805 281 881 54 654 24 624 49 649 14 614

priority 128 238 789 238 789 238 789 238 789 128 679 238 789 86 603
dec 256 18 322 20 324 18 322 18 322 9 313 18 322 10 314

adder 256 512 768 512 768 512 768 512 768 256 512 512 768 2 258
max 256 2294 4118 1726 3550 1725 3549 1723 3547 1250 3074 1723 3547 668 1456
sin 256 687 4169 1574 3636 572 3534 423 3905 132 3612 361 3841 71 3548
sqrt 256 4915 14155 4639 13879 4701 13941 4331 13571 1307 10547 4039 13279 659 9082

multiplier 256 16009 30185 7303 21479 11231 25407 5961 20137 1736 15912 5525 19701 2437 11946
div 256 6144 18680 6013 18549 7609 20145 5812 18348 926 13462 4986 17522 480 12725

log2 256 11388 31148 14702 34462 12581 32341 7043 26803 3878 23638 6414 26174 5063 19422

Ave. ratio / 28.22 1.84 27.57 1.69 27.21 1.73 25.06 1.63 11.99 1.31 24.69 1.59 1.00 1.00

TABLE III. Comparison results with the multi-array scheduler.

Circuit R |V| MASIM [8] MAPSIM(W.O.I.A) MAPSIM(POs Method) MAPSIM(l-level Method)
Copy Cycle Time(s) Copy Cycle Time(s) Copy Cycle Time(s) Copy Cycle Time(s)

adder 256 256 256 512 0.45 256 512 0.19 2 258 0.12 2 258 0.20
arbiter 256 11839 5853 17692 275.17 1433 7739 82.28 2126 7725 35.27 1019 7666 76.28

bar 256 3336 468 3804 27.44 582 3564 22.44 443 3490 30.44 346 3280 30.44
cavlc 64 600 19 619 13.05 14 614 1.23 14 614 0.38 14 614 1.23
ctrl 16 174 53 227 5.04 59 168 0.09 59 168 0.09 59 168 0.17
dec 256 304 9 313 12.86 10 314 0.32 10 314 0.33 10 314 0.74
div 256 12536 872 13408 39.62 688 12894 34.16 480 12725 24.18 480 12725 34.16
hyp 512 214335 53084 267419 103679.00 27187 176275 10954.78 18503 220147 10936.64 14227 204491 11665.78
i2c 256 1342 74 1416 13.64 19 1361 3.42 113 1247 3.36 113 1247 3.36

int2float 16 199 87 286 12.73 147 205 0.14 152 213 0.38 151 211 0.34
log2 256 19760 3311 23071 669.37 5437 18087 79.32 5063 19422 182.02 5063 19422 83.46
max 256 1824 937 2761 14.65 691 1953 3.21 816 1776 3.09 668 1456 3.11

memctrl 512 46836 17118 63954 5566.22 13657 31359 382.55 11134 30007 290.57 11281 31612 389.12
multiplier 256 14176 1440 15616 126.75 2161 11914 85.46 2637 12024 79.36 2437 11946 83.46
priority 128 551 128 679 5.03 128 679 2.78 86 603 3.96 86 603 3.96
router 64 201 70 271 2.47 86 275 0.16 46 221 0.16 46 221 0.16

sin 256 3482 120 3602 20.13 71 3548 7.94 71 3548 10.99 71 3548 9.44
sqrt 256 9240 1290 10530 49.33 867 8637 19.38 659 9082 10.68 659 9082 21.38

square 256 18484 1760 20240 80.01 1380 18736 154.99 1143 18955 148.77 1143 18955 156.99
voter 256 13758 2212 15970 5270.35 1847 11622 42.43 2727 6480 136.44 899 5290 39.41

Ave. ratio / / 7.99 1.43 15.02 7.59 1.14 0.88 1.20 1.03 1.00 1.00 1.00 1.00

the opposite trend is observed. This is because larger circuits
contain more vertices, which demand greater computational
space and force the input data to be distributed across more
arrays. For circuits of intermediate size, both calculation meth-
ods yield comparable performance. However, considering that
the max circuit requires a larger number of copy operations,
we ultimately set the value of Sizet to 9000.

B. Results on Different Schedulers

The performance of MAPSIM was compared against recent
single-array schedulers [3], [5]–[7] and the state-of-the-art
multi-array scheduler [8]. To provide a comprehensive evalu-
ation, we used the improved results in single-array schedulers
from [8] for our experiments. Specifically, when there is a tie
in priority among these schedulers, the scheduler will make a
random selection instead of selecting the one with the lowest
index. These schedulers ran the random version multiple times
until it reached the same runtime as MASIM and reported
the best result. The [7]+IG variant introduces the greedy
strategy described in its work, and [7]+Impr applies iterative
improvement to the original scheduling method.

The comparison results against various single-array sched-
ulers are summarized in TABLE II. MAPSIM consistently
achieves the lowest execution cycles across nearly all bench-
mark circuits. This performance advantage is primarily at-
tributed to its ability to exploit parallelism via multi-array
scheduling. In our SIMD-IMC architecture, we configured
the number of arrays N to 8, with each array containing R
rows, where R ranges from 16 to 256. The threshold was
set to Sizet = 9000. Regarding interconnection schemes, we
adopt the most restrictive approach, allowing only a single
copy instruction per cycle. Overall, MAPSIM outperforms all
competitors in both execution cycles and instruction over-
head, demonstrating superior effectiveness and efficiency. On
average, MAPSIM reduces the number of execution cycles
by 39.50%, 35.19%, 36.34%, 32.48%, 19.21%, and 30.85%
compared to [3], [5]–[7] and the enhanced variants [7]+IG,
and [7]+Impr. Furthermore, MAPSIM substantially reduces
the number of copy instructions, benefiting from an optimized
input allocation strategy and an effective selection of schedul-
ing candidates. In terms of execution time, MAPSIM achieves
average reductions by 74.99%, 73.15%, 72.86%, 66.04%,

11

ad
de

r

arb
ite

r
ba

r
ca

vlc ctr
l

de
c div hy

p i2c

int
2fl

oa
t
log

2
max

mem
ctr

l

mult
ipl

ier

pri
ori

ty
rou

ter sin sq
rt

sq
ua

re
vo

ter

0

0.5

1

1.5
N

or
m

al
iz

ed
V

al
ue

Copy Energy Computation Energy

Fig. 12. Normalized energy consumption of MAPSIM relative to
MASIM [8], including energy from copy and computation instruc-
tions across various benchmarks.

23.84%, and 63.11% relative to the same set of methods and
variants.

We also compare MAPSIM and its variants with the state-
of-the-art multi-array scheduler MASIM. The results are sum-
marized in TABLE III. The vertex number of each circuit is
represented as |V |. Specifically, MAPSIM(W.O.I.A) denotes
the results obtained without employing the input-assignment
strategy. MAPSIM(POs Method) refers to the variant that
uses POs as the counterpart of input-feature bipartite graph
construction during input-assignment. MAPSIM(l-level
Method) (will be referred to as MAPSIM below) corresponds
to the scheduling results of the method described in Section V.

Firstly, without employing the input-assignment strategy,
MAPSIM reduces the number of copy instructions and ex-
ecution cycles by 7.57% and 16.87%, respectively, compared
with MASIM. These results clearly demonstrate the effec-
tiveness of the proposed greedy scheduling strategy based on
scheduling potential, as well as the action selection mecha-
nism that utilizes maximum-weight matching in Section V-C
and Section V-D. Moreover, MAPSIM exhibits remarkable
efficiency. Without the input-assignment strategy, its runtime
is approximately 19.89× faster than that of MASIM, further
highlighting the computational advantage of our approach.
The advantages in copy instructions and execution cycles
are amplified after the input-assignment strategy is applied.
Overall, MAPSIM significantly reduces copy instruction count
by 19.78%, execution cycle count by 23.43%, and has a
15.02× faster runtime. Among the 20 circuits evaluated,
MAPSIM outperformed MASIM in execution cycle count
except one (the dec circuit). In particular, for circuits such
as arbiter, memctrl, and voter, MAPSIM required
less than half the execution cycles of MASIM, indicating
a substantial improvement in scheduling efficiency. In the
adder circuit, the number of copy instructions is reduced
by nearly 99.21%, attributed to the novel input-assignment
strategy that effectively alleviates congestion and preserves
more rows for computation. Moreover, the efficiency advan-
tage of MAPSIM is particularly pronounced for large-scale
circuits. For example, in voter, MAPSIM achieves a runtime
speedup of approximately 133.75× over MASIM. Such results
highlight the high computational efficiency of the proposed
method.

ad
de

r

arb
ite

r
ba

r
ca

vlc ctr
l

de
c div hy

p i2c

int
2fl

oa
t
log

2
max

mem
ctr

l

mult
ipl

ier

pri
ori

ty
rou

ter sin sq
rt

sq
ua

re
vo

ter

0

0.5

1

N
or

m
al

iz
ed

V
al

ue

Copy Instructions Execution Cycles

Fig. 13. Normalized numbers of copy instructions and execution
cycles for the l-level Method relative to the POs method across
various benchmarks.

C. Results on Energy Consumption

Based on the energy breakdown of computing stages re-
ported in [3], a copy instruction consumes 1.87× the energy
of a computation instruction (accounting for double precharge,
discharge, and single write-back). Using this energy model,
Fig. 12 presents the normalized energy relationship between
MAPSIM and MASIM across benchmarks. The energy con-
sumption is divided into copy instruction energy (blue) and
computation instruction energy (purple), allowing for a clearer
analysis of MAPSIM’s energy consumption across different
circuits. MAPSIM outperforms the state-of-the-art scheduler
in 14 out of the 20 benchmark circuits. In the best case, MAP-
SIM reduces energy consumption to 35.21% of MASIM. On
average, it achieves a 7.81% reduction in energy consumption
compared to MASIM. These results highlight the effectiveness
of MAPSIM in reducing energy usage.

D. Results on Different Input-Assignment Strategies

Note that the proposed MAPSIM method employs the l-
level assignment described in Section V-B. An alternative
strategy is to use POs as vertices on one side of the bipartite
graph, referred to as the POs method. To evaluate the im-
pact of these two input-assignment strategies on subsequent
scheduling performance, we conducted experiments across all
benchmark circuits in the EPFL suite, with the results shown
in TABLE III and Fig. 13. The experimental results show that,
in general, both methods achieve comparable total execution
cycles and numbers of copy instructions. Nevertheless, for
certain benchmark circuits, the l-level method outperforms the
POs method, reducing the number of instruction copies and
total execution cycles by an average of 9.46% and 2.33%,
respectively. These results corroborate our discussion in Sec-
tion V-B that using POs as one side of the bipartite graph may
compromise scheduling efficiency by favoring locally optimal
decisions over globally optimized scheduling.

VII. CONCLUSION

This paper presented MAPSIM, an efficient multi-array
parallel scheduler. To mitigate input congestion, we introduced
a novel partitioning strategy that constructs a bipartite graph
from input features to effectively solve the input assignment
problem. For multi-array parallel scheduling, we modeled the

12

data state of each array as an array state and assigned each
state a scheduling potential energy. By greedily searching for
the maximum achievable energy gain within each state, the
scheduler rapidly determines scheduling decisions. To speed
up the transition between states, we employed priority queue
filtering and maximum-weight matching to identify the near-
optimal and feasible next state. Experimental results demon-
strated that MAPSIM reduced execution cycles by 23.43% and
copy instructions by 19.78% compared to the state-of-the-art
scheduler, while achieving a 15.02× speedup in runtime.

REFERENCES

[1] A. Pedram, S. Richardson, M. Horowitz, S. Galal, and S. Kvatinsky,
“Dark memory and accelerator-rich system optimization in the dark
silicon era,” IEEE Design & Test, vol. 34, no. 2, pp. 39–50, 2017.

[2] N. Hajinazar, G. F. Oliveira, S. Gregorio, J. a. D. Ferreira, N. M. Ghiasi,
M. Patel, M. Alser, S. Ghose, J. Gómez-Luna, and O. Mutlu, “SIM-
DRAM: a framework for bit-serial SIMD processing using DRAM,” in
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). Association for
Computing Machinery, 2021, p. 329–345.

[3] C. Nie, X. Cai, C. Lv, C. Huang, W. Qian, and Z. He, “XMG-GPPIC:
Efficient and robust general-purpose processing-in-cache with XOR-
majority-graph,” in ACM Great Lakes Symposium on VLSI (GLSVLSI),
2023, p. 183–187.

[4] J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, and
D. Sylvester, “A 28-nm compute SRAM with bit-serial logic/arithmetic
operations for programmable in-memory vector computing,” IEEE Jour-
nal of Solid-State Circuits, vol. 55, no. 1, pp. 76–86, 2020.

[5] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, N. Peled,
and S. Kvatinsky, “SIMPLER MAGIC: Synthesis and mapping of in-
memory logic executed in a single row to improve throughput,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 39, no. 10, pp. 2434–2447, 2020.

[6] F. Wang, G. Luo, G. Sun, J. Zhang, J. Kang, Y. Wang, D. Niu,
and H. Zheng, “STAR: Synthesis of stateful logic in RRAM targeting
high area utilization,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 40, no. 5, pp. 864–877,
2021.

[7] X. Qian, C. Lv, Z. He, and W. Qian, “A recursive partition-based
in-memory SIMD computation scheduler for memory footprint mini-
mization,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 44, no. 6, pp. 2105–2118, 2025.

[8] X. Qian, C. Nie, Z. He, and W. Qian, “MASIM: An energy-efficient
multi-array scheduler for SIMD logic-in-memory architectures,” in
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2025, pp. 1–9.

[9] N. Talati, A. H. Ali, R. Ben Hur, N. Wald, R. Ronen, P.-E. Gaillardon,
and S. Kvatinsky, “Practical challenges in delivering the promises of real
processing-in-memory machines,” in IEEE/ACM Proceedings Design,
Automation and Test in Eurpoe (DATE), 2018, pp. 1628–1633.

[10] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute caches,” in IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2017, pp. 481–492.

[11] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaauw, and R. Das, “Neural cache: bit-serial in-cache acceleration
of deep neural networks,” in IEEE/ACM International Symposium on
Computer Architecture (ISCA), 2018, p. 383–396.

[12] W. A. Simon, Y. M. Qureshi, M. Rios, A. Levisse, M. Zapater, and
D. Atienza, “BLADE: An in-cache computing architecture for edge
devices,” IEEE Transactions on Computers, vol. 69, no. 9, pp. 1349–
1363, 2020.

[13] R. Fan, Y. Cui, W. Li, M. Wang, and Z. Li, “MagiCache: A virtual
in-cache computing engine,” in IEEE/ACM International Symposium on
Computer Architecture (ISCA), 2025, p. 1806–1818.

[14] W. Haaswijk, M. Soeken, L. Amarù, P.-E. Gaillardon, and
G. De Micheli, “A novel basis for logic rewriting,” in IEEE/ACM Asia
and South Pacific Design Automation Conference (ASPDAC), 2017, pp.
151–156.

[15] L. Hellerman, “A catalog of three-variable or-invert and and-invert
logical circuits,” IEEE Transactions on Electronic Computers, vol. EC-
12, no. 3, pp. 198–223, 1963.

[16] R. Fu, J. Huang, M. Wang, Y. Nobuyuki, B. Yu, T.-Y. Ho, and O. Chen,
“BOMIG: A majority logic synthesis framework for AQFP logic,” in
IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE),
2023, pp. 1–2.

[17] R. Fu, R. Zhang, Z. Zheng, Z. Shi, Y. Pu, J. Huang, Q. Xu, and T.-Y.
Ho, “Late breaking results: Hybrid logic optimization with predictive
self-supervision,” in ACM/IEEE Design Automation Conference (DAC),
2025.

[18] R. Fu, R. Zhang, Z. Zheng, Z. Shi, Y. Pu, J. Huang, B. Yu, Q. Xu,
and T.-Y. Ho, “CHOP: Clustered hybrid optimization for logic synthesis
with self-supervised prediction,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), pp. 1–14, 2026.

[19] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “‘memristive’ switches enable ’stateful’ logic operations
via material implication,” Nature, vol. 464, no. 7290, pp. 873–876, Apr.
2010.

[20] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 31, no. 7, pp. 994–1007, 2012.

[21] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[22] H. W. Kuhn, “Variants of the Hungarian method for assignment prob-
lems,” Naval Research Logistics Quarterly, vol. 3, no. 4, pp. 253–258,
1956.

[23] J. Edmonds, “Maximum matching and a polyhedron with 0, 1-vertices,”
Journal of Research of the National Bureau of Standards B, vol. 69, no.
125-130, pp. 55–56, 1965.

[24] G. Karypis and V. Kumar, “METIS: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices,” 1997, retrieved from the University Digital
Conservancy.

[25] Karypis, George, Kumar, and Vipin, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on Scientific
Computing, vol. 20, no. 1, p. 359–392, 1998.

[26] R. Ben Hur, N. Wald, N. Talati, and S. Kvatinsky, “Simple magic:
Synthesis and in-memory mapping of logic execution for memristor-
aided logic,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2017, pp. 225–232.

[27] M. Soeken, S. Shirinzadeh, P.-E. Gaillardon, L. G. Amarú, R. Drechsler,
and G. De Micheli, “An MIG-based compiler for programmable logic-
in-memory architectures,” in ACM/IEEE Design Automation Conference
(DAC), 2016, pp. 1–6.

[28] M. R. H. Rashed, S. K. Jha, and R. Ewetz, “Logic synthesis for
digital in-memory computing,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2022.

[29] M. R. H. Rashed, S. Thijssen, S. Jha, and R. Ewetz, “LOGIC: Logic
synthesis for digital in-memory computing,” ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol. 30, no. 2,
2025.

[30] L. Amarù, P.-E. Gaillardon, and G. De Micheli, “The EPFL combina-
tional benchmark suite,” in IEEE/ACM International Workshop on Logic
Synthesis (IWLS), 2015.

[31] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, S.-Y. Lee, A. Tempia Calvino, and G. Marakkalage,
Dewmini Sudara De Micheli, “The EPFL logic synthesis libraries,”
2022, arXiv:1805.05121v3.

Rongliang Fu received his Ph.D. in Computer Sci-
ence and Engineering from The Chinese University
of Hong Kong in January 2026, following an M.S.
from the University of Chinese Academy of Sciences
in June 2021 and a B.S. in Software Engineering
from Northwestern Polytechnical University in June
2018. He has authored over 30 papers across major
journals (IEEE TC and IEEE TCAD) and con-
ferences(DAC, DATE, ICCAD, etc.). His research
spans electronic design automation and EDA for
superconducting electronics.

13

Ran Zhang received his B.S. degree from North-
eastern University, Shenyang, in 2023. He is cur-
rently a master’s student at the University of Chinese
Academy of Sciences (UCAS), under the Institute
of Computing Technology, Chinese Academy of
Sciences. His research interests include electronic
design automation and computer architecture.

Libo Shen received his B.S. degree in communica-
tion engineering from Beijing University of Posts
and Telecommunications, Beijing, China, in 2021
and his MS degree in computer technology from
the University of Chinese Academy of Sciences,
Beijing, China, in 2024. He is currently a Ph.D.
student at the Department of Computer Science and
Engineering, The Chinese University of Hong Kong.
His research interests include electronic design au-
tomation and computer architecture.

Wei Xuan received his Ph.D degree in computer sci-
ence and technology from the University of Chinese
Academy of Sciences, Beijing, China, in 2023. He is
currently a Postdoctoral fellow in the Department of
Electronic and Computer Engineering at The Hong
Kong University of Science and Technology and a
member of the AI Chip Center for Emerging Smart
Systems (ACCESS) under InnoHK. His research fo-
cuses on computer architecture and machine learning
security.

Ning Lin is a Postdoctoral Research Fellow at the
University of Hong Kong. He earned his doctor-
ate from the Institute of Computing Technology,
Chinese Academy of Sciences (Beijing) in 2022.
Dr. Lin has authored over 40 publications including
Nature Computational Science, Nature Communica-
tions, Science Advances, IEEE TCAD, DAC, IC-
CAD. He serves as a reviewer for leading journals
and conferences such as IEEE TCAD, NeurIPS,
ICLR, ICML, and AAAI. Dr. Lin’s current research
centers on hardware security for AI accelerator.

Junying Huang received her Ph.D. degree in mi-
croelectronics and solid-state electronics from the
University of Chinese Academy of Sciences in 2016.
Currently she is an associate professor with the
Department of High-throughput Computer Research
Center, Institute of Computing Technology, Chinese
Academy of Sciences. Her research interests include
superconductive RSFQ logic, computer architecture,
electronic design automation, and hardware security.

Bei Yu (M’15-SM’22) received the Ph.D. degree
from The University of Texas at Austin in 2014.
He is currently a Professor in the Department of
Computer Science and Engineering, The Chinese
University of Hong Kong. He has served as TPC
Chair of ACM/IEEE Workshop on Machine Learn-
ing for CAD, and in many journal editorial boards
and conference committees. He received eleven Best
Paper Awards from ICCAD 2024 & 2021 & 2013,
IEEE TSM 2022, DATE 2022, ASPDAC 2021 &
2012, ICTAI 2019, Integration, the VLSI Journal

in 2018, ISPD 2017, SPIE Advanced Lithography Conference 2016, nine
ICCAD/ISPD contest awards, IEEE CEDA Ernest S. Kuh Early Career Award
in 2021, DAC Under-40 Innovator Award in 2024, and Hong Kong RGC
Research Fellowship Scheme (RFS) Award in 2024.

Tsung-Yi Ho (F’24) is a Professor in the Depart-
ment of Computer Science and Engineering, The
Chinese University of Hong Kong (CUHK). He
received his Ph.D. in Electrical Engineering from
National Taiwan University in 2005. His research
interests include several areas of computing and
emerging technologies, especially in the design au-
tomation of microfluidic biochips. He was a recipient
of the Best Paper Award at the IEEE Transactions
on Computer-Aided Design of Integrated Circuits
and Systems in 2015. Currently, he serves as the

VP Conferences of IEEE CEDA, and the Executive Committee of ASP-DAC
and ICCAD. He is a Distinguished Member of ACM and a Fellow of IEEE.

14

