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Abstract—Superconducting rapid single-flux-quantum (RSFQ)
logic is a promising candidate for advancing future comput-
ing technologies due to its low-energy consumption and high-
frequency capabilities. However, precise timing alignment is cru-
cial for its physical design, posing significant challenges in length-
matching placement and routing. This paper introduces JPnR, a
physical design framework tailored for RSFQ circuits, featuring a
clock-aware length-matching placer and a length-matching multi-
terminal router. The placer simultaneously considers both clock
distribution and timing constraints, distributing clock pulses
heuristically and transforming the placement problem into a
single-source shortest-path problem. This allows it to minimize
vertical wirelength using dynamic programming and iteratively
optimize placement via a barycenter-like reordering method.
The router tackles challenges related to splitter placement and
length-matching multi-terminal routing using a two-layer planar
Manhattan routing model. Initial routing assigns tracks based
on the left-edge algorithm to minimize routing width while
employing the dogleg algorithm to resolve cycles in the vertical
constraint graph. Length-matching is achieved via a splitter tree-
based hierarchical approach with maximum-flow-based detour
insertion. Finally, a PTL region expansion strategy is employed
for unsatisfied connections. Experimental results on RSFQ bench-
marks demonstrate the effectiveness and efficiency of JPnR.

Index Terms—Superconducting electronics, single-flux-
quantum, placement, routing, length-matching, clock-aware

I. INTRODUCTION

RAPID single flux-quantum (RSFQ) circuits [1] represent
a promising category of superconducting integrated cir-

cuits, leveraging Josephson junctions (JJs) to achieve high-
performance computing capabilities. JJs are superconducting
active devices based on the Josephson effect, characterized
by exceptional switching speeds (∼1 ps per switch) and ultra-
low switching energy (<10−19 J per switch) [2]. The RSFQ T
flip-flop has been demonstrated to operate at frequencies up to
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770GHz at a temperature of 4.2K [3]. The potential of RSFQ
technology to revolutionize high-speed computing has driven
significant advancements in RSFQ processors and accelerators.
With improvements in RSFQ fabrication, researchers have
successfully designed critical processor components, including
arithmetic logic units (ALUs) [4], register files [5], and branch
predictors [6], as well as microprocessors that operate at fre-
quencies exceeding 30GHz [7]. Moreover, RSFQ technology
has been applied to hardware accelerators capable of operating
at tens of gigahertz frequencies [8], [9].

Despite these advancements, the design of complex RSFQ
circuits remains challenging due to the immaturity of design
automation tools. The lack of robust, industrial-strength design
tools for RSFQ circuits complicates physical design, often
necessitating extensive timing adjustments to achieve closure.
Unlike CMOS technology, the operating frequency of RSFQ
circuits depends critically on the difference between the arrival
times of data and clock pulses [10]. A significant discrepancy
in the arrival times of data and clock pulses at RSFQ logic
gates can lead to a substantial decrease in operating frequency.
Therefore, ensuring that the arrival times of data and clock
pulses are closely matched is essential for maximizing the
frequency of RSFQ circuits.

To develop an efficient physical design tool for RSFQ
logic, several specific challenges must be addressed. A primary
challenge involves ensuring the timing alignment of clock and
data pulses for all clock-driven logic gates, as any timing
violation can result in functional errors. Additionally, con-
structing the clock distribution network during the physical
design process presents challenges, as different networks can
significantly impact the lengths of clock and data connections,
thereby affecting the overall circuit area. Furthermore, the
non-standardized layouts of RSFQ library cells, which vary
in width and height, complicate the consideration of realistic
cell sizes and delays in automated physical design. Accurate
modeling of these diverse cells is necessary for effective au-
tomation. Splitter placement also poses a significant challenge
in RSFQ physical design.

This paper introduces JPnR, a physical design framework
for RSFQ circuits that addresses these challenges. We propose
two key methodologies: (1) a clock-aware length-matching
placement algorithm that optimizes the timing alignment of
clock and data pulses, and (2) a splitter-aware multi-terminal
hierarchical length-matching routing algorithm that minimizes
routing width. We model the RSFQ timing alignment limita-
tion as a length-matching problem, accounting for both clock
and data connection lengths during placement and routing. In
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JPnR, clock distribution is generated during placement using
a heuristic strategy within a multi-stage pipelined architecture.
We use actual cell sizes and delay parameters from the RSFQ
library to enhance practicality. Additionally, we address splitter
placement during routing by considering the actual size and
delay of splitters. Our evaluation demonstrates that the pro-
posed placement and routing methods significantly outperform
state-of-the-art methods.

Overall, the key contributions are as follows:

• We propose JPnR, an end-to-end framework for RSFQ
physical design that integrates placement, clock tree gen-
eration, and routing.

• We propose a clock-aware length-matching placement
algorithm that considers both clock and data connections
to minimize total vertical wirelength, thereby alleviating
timing alignment challenges during routing.

• We propose a multi-terminal hierarchical routing algo-
rithm that jointly performs length-matching routing and
splitter placement for RSFQ circuits.

• We introduce a track assignment-based initial routing
algorithm that minimizes initial routing width while fa-
cilitating efficient track assignment for cyclic vertical
constraint graph (VCG) structures.

• Experimental results show that the proposed placement
algorithm reduces vertical wirelength by 43.91% and
43.23% on ISCAS85 [11] and EPFL [12] benchmarks,
compared to the state-of-the-art methods. The proposed
routing algorithm achieves substantial routing width re-
ductions, averaging 38.20%, 38.29%, 21.52%, and 7.38%
on random testcases, surpassing Kito’s [13], Kou’s [14],
and Yan’s [15], [16] methods.

• We use initial routing results to refine placement for more
accurate wirelength estimation, improving overall quality.
On ISCAS85 [11] and EPFL [12] benchmarks with the
ColdFlux RSFQ logic cell library [17], JPnR achieves
reductions of 4.56% in total wire length and 3.69% in
circuit area.

II. BACKGROUND

A. Rapid Single-Flux-Quantum Circuits
Superconducting RSFQ logic [1] is a representative ultra-
fast and low-power circuit technology using superconducting
devices called Josephson junctions, which consist of a thin
insulator sandwiched between superconductors. RSFQ circuits
utilize the existence of a single flux quantum (SFQ) in the
JJ as an information carrier, similar to the voltage level in
conventional CMOS technology. The presence or absence of
an SFQ pulse indicates the logical value of ‘1’ or ‘0’.

1) Fan-out limitation
Unlike conventional CMOS technology, an RSFQ logic

gate can only drive one other gate due to its limited pulse
drive capability. Therefore, multi-fan-out nets in RSFQ circuits
necessitate the construction of splitter trees to distribute pulses
from the source to multiple sinks. This requires a specialized
JJ-based gate called the splitter (SPL). Consequently, numer-
ous splitters appear in multi-fan-out nets, posing a significant
challenge in RSFQ circuit routing.
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Fig. 1 (a) RSFQ logic timing constraints. (b) and (c) are the tree-based clock
distributions for RSFQ circuits by Kito et al. [22] and Yan [23], respectively.

2) Gate-level Pipelining
Most RSFQ logic gates require a clock pulse to transfer

the stored SFQ to adjacent gates, enabling natural gate-level
pipelining. Consequently, to ensure proper logic operations
of an RSFQ logic gate, all its fan-in gates should have
the same logic stage, known as the path balancing property.
Notably, the logic stage of a gate is defined as the maximum
number of clocked gates from any primary input (PI) of
the circuit to this gate [18]–[20]. Given this inherent gate-
level pipelining characteristic, RSFQ circuits naturally adopt
a pipelined layout based on the logic stage of each logic gate.
In this pipelined RSFQ layout structure, the logic gates are
organized in columns according to their logic stages. Logic
gates with the same logic stage are placed within the same
column. These columns are arranged in ascending order of
the logic stages from left to right, establishing a multi-stage
pipelined layout.

3) RSFQ Interconnects
RSFQ circuits utilize two primary interconnect types:

Josephson transmission lines (JTLs) and passive transmission
lines (PTLs). JTLs, comprising a series of JJs [1], are active
components capable of introducing intentional delays but
suffer from significant power consumption due to JJ switching.
Conversely, PTLs are lossless superconducting waveguides,
typically implemented as microstrip lines [21], enabling RSFQ
pulses to propagate with minimal power consumption at ap-
proximately the speed of light. We employ PTLs for gate-to-
gate connections and fine delay adjustments. Notably, since
PTL delay scales linearly with length, timing adjustments
can be effectively translated into length-matching constraints
during physical design.

B. Timing Constraints
RSFQ circuits utilize concurrent-flow clocking as a representa-
tive clock scheme [10], where the flow directions of the clock
and data pulses are the same, and the clock arrives before
the data. For the circuit to function correctly, the RSFQ data
pulses must not only arrive within the same clock cycle but
also maintain a specific delay in relation to the clock pulse.
These requirements form the timing constraints of RSFQ
circuits. The timing constraints associated with concurrent-
flow clocking are illustrated in Fig. 1(a). To ensure the correct
operation of the logic gate, the arrival time of its clock and
data pulses must satisfy:

tc + thold < tdata < tc + tT − tsetup, (1)
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Fig. 2 Solutions of a length-matching routing example using (a) Kito’s routing algorithm [13], (b) Kou’s routing algorithm [14], (c) Yan’s routing algorithm
[15], and (d) ours, where the red numbers indicate the row and column indices. (e) and (f) show a comparison between splitter pre-allocation and splitter
reallocation. The leftmost column, highlighted in gray, is the pre-allocated column for splitters, while the white grids are the PTL routing region.

which tc and tdata refer to the arrival times of the clock
and data pulses, respectively. tsetup, thold, and tT are timing
parameters determined by the specific characteristics of the
gate. tsetup is the minimum time that the data must remain
stable before the next clock pulse to ensure correct processing,
while thold ensures that the data arriving after this time does
not affect the operation results of the gate in the current clock
cycle. tT represents the clock cycle. If the arrival times of the
data and clock pulses do not meet these timing constraints,
the logic gate may produce incorrect results.

C. Timing Alignment using Length-Matching
The timing constraints for each logic gate in the design of
the RSFQ circuit can be expressed using Equation (1). Given
the essential characteristic of PTL, where transmission delay
is proportional to its length, the timing constraints can be
transformed into a length-matching problem:

lc + lhold < ldata < lc + lT − lsetup, (2)

where lc and ldata represent the PTL lengths of the clock con-
nection and data connection, respectively, with corresponding
delays of tc and tdata. Additionally, lhold, lT , and lsetup denote
the PTL lengths that match the delays of thold, tT , and tsetup,
respectively. To ensure the circuit maintains a stable operating
state, even with variations caused by process deviations, we
expect the data pulses to arrive at the midpoint of the time
interval, which means:

ldata =
1

2

[
(lc + lhold) + (lc + lT − lsetup)

]
= lc +∆l, (3)

where ∆l = lT−lsetup+lhold

2 is the additional PTL length that
the data connection requires compared to the clock connection.

In RSFQ circuits, the wiring is divided into two compo-
nents: basic wires and detours. Basic wires link the corre-
sponding pins with the shortest path possible while avoiding
overlap with other connections. The detours are introduced
to adjust the timing of the RSFQ circuit. Their values are
estimated during placement and serve as input for routing.

The detour process utilizes available routing areas to make
detours. However, when space is insufficient, an expanded
routing region is required to facilitate timing adjustments.
As detours increase, more routing space is needed, leading
to a wider routing region. To optimize layout compactness,
we adopt the zigzag wiring strategy from [13], [22], which

restricts detours to the vertical direction between adjacent gate
columns, thereby enhancing routing efficiency.

III. RELATED WORK

Superconducting circuits exhibit unique characteristics that
present challenges across multiple domains, including device
and material, fabrication processes, circuit and architecture
design, system modeling, and electronic design automation
(EDA) [24], [25]. Due to these distinctive properties and
constraints, conventional EDA tools developed for CMOS
circuits cannot be directly applied to superconducting circuits.
Extensive research has therefore produced various automated
methods for synthesis [18], [20], [26]–[29], verification [19],
[30], timing analysis [31], and physical design [32], [33] of su-
perconducting circuits. This paper concentrates on the physical
design of superconducting RSFQ circuits, providing a review
of existing work in three critical areas: clock distribution,
placement, and routing.

A. Clock Distribution
In RSFQ circuits, due to the strict timing constraints and the
presence of numerous splitters for multiple fan-outs, effective
clock distribution is essential in the physical design of RSFQ
circuits. Previous studies have explored various tree-based
clock distribution structures in RSFQ circuits. Kito et al. [22]
developed a multi-level distribution tree to achieve clock
distribution. As shown in Fig. 1(b), the input clock pulse
first enters a splitter tree. Subsequently, this splitter tree splits
this pulse into multiple clock pulses, where one clock pulse
propagates to the next splitter tree while others propagate to
the logic gates within the current gate column. However, since
the clock inputs of all gates within one gate column originate
from the same splitter tree, connections between the outputs
of this tree and the clock pins of these gates require lengthy
wires, increasing routing costs. To reduce the complexity of
clock distribution, Yan [23] proposed a more efficient method
for constructing clock trees, as shown in Fig. 1(c). Similar to
Kito’s method, the clock pulse is initially fed into a splitter
tree, which delivers clock pulses to the gates within the first
gate column. For the subsequent gate columns, each logic
gate within the ith column is linked to a splitter, allowing
the clock pulse to propagate to the (i + 1)th column. This
design effectively integrates clock splitter trees into logic gate
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placement, significantly reducing routing costs and minimizing
signal transmission delays. This paper adopts this clock dis-
tribution strategy and proposes a heuristic method to generate
the clock distribution efficiently. Researchers have also drawn
upon design practices from semiconductor circuits, proposing
an H-tree based clock network to minimize clock skew in
conjunction with a row-based cell placement method [34],
where all RSFQ cells are of equal height. Alternatively, novel
timing schemes to trade off maximum achievable throughput
with lower overhead, such as the dual clocking method [35]
and multi-phased clocks [36] have also been explored.

B. RSFQ Placement
Several studies [22], [37]–[39] have been proposed for RSFQ
placement. Kito et al. [22] proposed a simulated annealing
(SA)-based algorithm, which is computationally intensive for
large circuits and does not consider timing alignment. Yan [37]
proposed a fixed-order placement method that outperforms
the SA-based method in speed. However, this method fixes
the relative positions of logic gates, thereby restricting the
exploration of potential solution spaces, while it only focuses
on the delay matching between data pulses and ignores clock
pulses, which complicates timing alignment during routing.
Similarly, Kitamura et al. [38] proposed a length-matching-
aware placement method to minimize extended wirelength.
However, this method also primarily focused on matching
the lengths of the data nets, ignoring the timing constraints
between the data and clock nets. Therefore, this paper first
integrates the construction of the clock distribution into the
placement and then minimizes the routing width while meeting
the timing constraints.

C. RSFQ Routing
Numerous studies [13]–[16], [40] have been proposed for the
routing of RSFQ circuits. Kito et al. [13] employed a two-layer
horizontal/vertical routing model and developed an integer
linear programming-based method to minimize the routing
width. In this routing model, as shown in Fig. 2(a), one layer
is used for horizontal wires, and the other is used for vertical
wires, significantly limiting the routing efficiency. Similarly,
qGDR [41] adopts this routing model to employ channel-
based routing methodologies for RSFQ circuits inspired by
CMOS design. However, it does not apply superconducting
concurrent clocking, resulting in lower operating frequencies.
Yan [15] addressed this limitation by proposing a more flexible
two-layer planar Manhattan routing model, which allows both
horizontal and vertical wire assignments in the top and bottom
layers, as shown in Fig. 2(c). This flexibility improves the
utilization of limited routing resources in two routing layers.
Additionally, Yan [16] proposed a via-minimization-oriented
routing algorithm to mitigate the adverse effects of impedance
mismatch in routing. However, these methods in [13], [15],
[16] pre-place splitters into gate columns, which may increase
the wirelength and decrease routability during length-matching
routing. To integrate splitter placement with routing, Cheng et
al. [40] and Kou et al. [14] achieved co-optimizing splitter
placement and routing, as shown in Fig. 2(b). However, their
methods are limited to the two-layer horizontal/vertical routing
model, which restricts flexibility in resource utilization. These
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Fig. 3 Partial schematic of the circuit placement, where each node consists
of one clock splitter (yellow box) and one logic gate. g4 has a height of hg4
and is located at yg4 . Its data inputs come from g1 and g2, and its output
flows to g6 and g7, i.e., FI(g4) = {g1, g2} and FO(g4) = {g6, g7}. The
vertical minimum length of its data connection from g1 is lvd1,4. The vertical
minimum length of its clock connection is lvc4 .

studies collectively highlight the complexity of RSFQ routing
due to the extensive clock tree distribution and limited routing
resources.

IV. PROBLEM FORMULATION

A. Terminology
An RSFQ circuit can be represented as a directed acyclic graph
G(V,E). The node set V consists of three disjoint subsets:
I , denoting PIs; O, denoting primary outputs (POs); and C,
denoting logic gates. For a node v ∈ V , let Ei(v) and Eo(v)
represent the sets of its input and output edges, respectively.
The fan-in and fan-out nodes of v are denoted by FI(v) and
FO(v), respectively. The logic stage of v is defined as L(v) =
max

u∈FI(v)
L(u)+ 1. By definition, PIs have no fan-in nodes (i.e.,

FI(i) = ∅ for all i ∈ I), and POs have no fan-out nodes
(i.e., FO(o) = ∅ for all o ∈ O). The edge set E represents
the interconnections (nets), and consists of two subsets: Eu,
representing 2-pin nets, and Em, representing multi-pin nets
(nets with more than two pins). For an edge e ∈ E, let es
denote its source node and et the set of its sink nodes. Then,
e ∈ Eu if and only if |et| = 1, and e ∈ Em if and only
if |et| > 1. After inserting splitters for multi-fan-out nets, an
extended graph G′(V ′, E′) is constructed, where V ′ = V ∪S,
with S denoting the sets of inserted splitters, respectively.

B. Problem Formulation
RSFQ physical design involves the physical placement and
routing of RSFQ circuits, with the primary goal of minimizing
circuit area and wirelength while satisfying strict timing con-
straints. In RSFQ circuits, precise timing alignment is crucial
for correct RSFQ operations and is achieved by imposing
length-matching constraints on each PTL connection. Since
detours only occur in the vertical direction, length-matching
is applied exclusively to vertical wire segments. Therefore, the
primary objective of pipelined placement with length-matching
constraints is to minimize the total vertical wirelength (TVWL),
which is the sum of the vertical minimum length and the
vertical matching length, formulated as:

TVWL =
∑
v∈V

lvcv + lmc
v +

∑
u∈FI(v)

(
lvdu,v + lmd

u,v

) , (4)

where lvcv and lmc
v are the vertical minimum length and vertical

matching length of node v’s clock connection, and lvdu,v and lmd
u,v
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Fig. 4 The JPnR flow, where I is the number of placement iterations.

are the vertical minimum length and vertical matching length
of the data connection between u and v. The vertical minimum
length is the overall vertical Manhattan distance between logic
gates, while the vertical matching length signifies the total
length of the detours required to meet timing constraints.
Fig. 3 shows a partial schematic of the circuit placement, with
illustrations of the vertical minimum length for the clock and
data connections. To calculate the minimum vertical matching
length of data and clock connections, let lvdv = max

u∈FI(v)
lvdu,v ,

which indicates the time when all data pulses arrive at v. When
lvcv + ∆l < lvdv , node v’s clock connection requires detours,
which means lmc

v = lvdv − lvcv − ∆l and lmd
u,v = lvdv − lvdu,v .

Otherwise, the data connections between u ∈ FI(v) and v
require detours, which means lmd

u,v = lvcv +∆l− lvdu,v, u ∈ FI(v)
and lmc

v = 0.

After completing the placement, the location of each node
can be obtained, allowing the calculation of the vertical
minimum length and vertical matching length for all con-
nections. Since detours only occur in the vertical direc-
tion, the vertical matching length of the connection is its
extension length required during routing. Subsequently, the
routing width between adjacent gate columns needs to be
determined. As shown in Fig. 2, the routing region between
two adjacent gate columns is modeled as a rectangular grid,
where each grid represents a PTL routing region with unit
height and width. The set of nets to be routed is defined
as {net1, net2, · · · , netm}, where each net neti connects a
source si to a set of ni sinks {ti,1, ti,2, · · · , ti,ni

}, represented
as neti : si → {ti,1, ti,2, · · · , ti,ni

}. A connection between
the source si and a sink ti,j (for j ∈ [1, ni]) is denoted
by si → (ti,j , ei,j), j ∈ [1, ni], where ei,j denotes its
required extension length. For example, in Fig. 2(a), the net
s1 → {t1,1, t1,2} has two connections that require extension
lengths of 12 and 2, respectively.

Hence, the length-matching routing problem seeks to min-
imize this routing width ensuring all connections are suc-
cessfully routed and satisfy their length-matching constraints.
Specifically, the total routing length di,j for a connection
si → (ti,j , ei,j) must adhere to the following equation:

di,j = |si − ti,j |+ ei,j + w, (5)

where si and ti,j also denote the vertical positions of the
corresponding terminals, and w represents the routing width
of the PTL region. Since detours only occur in the vertical
direction, extension lengths are always even numbers [13].
In Fig. 2(a), the connection s1 → (t1,1, e1,1) (green line)
requires a total length of d1,1 = 23. Given w = 11 and
|s1 − t1,1| = 0, an extension length of e1,1 = 12 is necessary
to satisfy Equation (5).

Therefore, the physical design problem for RSFQ circuits
can be formulated as follows.

• Input:
1) A path-balanced RSFQ circuit G(V,E).
2) An RSFQ cell library including the physical and timing

parameters of logic gates, splitters, and PTLs.
• Output:

1) Splitter trees for multi-fan-out nets.
2) The clock distribution of the circuit.
3) A legal horizontal and vertical location (xv , yv) for

∀v ∈ V .
4) A legal routing path for ∀e ∈ E.

• Constraints:
1) Timing constraints defined by Equation (3).
2) Overlap constraints: For two nodes u and v in the same

column, yu + hu ≤ yv if yu ≤ yv .
3) For every node v ∈ V , yv ≥ 0 and yv + hv ≤ H ,

where H is the maximum height among all columns.
4) The ei,j for si → ti,j must be rounded to even.

• Goal:
Our goal is to minimize the circuit area and wirelength
while satisfying the timing constraints.

V. JPNR
To address the physical design challenges in RSFQ circuits, we
propose a length-matching placement and routing framework
named JPnR, which consists of two key components: (1) a
clock-aware length-matching placement method, and (2) a
length-matching multi-terminal routing method. An overview
of the proposed framework is displayed in Fig. 4. During
the RSFQ circuit placement phase, we consider clock tree
construction and timing constraints and iteratively optimize
the placement result to minimize wirelength. Subsequently,
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the routing phase implements the placement of splitters and
performs length-matched multi-terminal routing, conforming
to a two-layer planar Manhattan routing model.

A. Placement Method
To address the RSFQ placement problem, we propose a length-
matching RSFQ placement algorithm, depicted in the yellow
part of Fig. 4. The algorithm comprises four key steps: 1)
initial placement, 2) clock distribution generation, 3) fine-
grained dynamic programming (DP)-based placement, and 4)
barycenter-like reordering. In the initial placement step, logic
gates are grouped into columns based on their logic stages,
and their initial positions are assigned randomly. A heuristic
method is then proposed to generate the clock distribution.
Subsequently, a DP-based method is proposed to minimize
TVWL while assigning the positions of all gates within each
column. Finally, a barycenter-like reordering method is pre-
sented to adjust gate positions to explore further optimization.
Details of each step are elaborated in subsequent subsections.

1) Initial placement
For convenience for subsequent clock distribution genera-

tion, as shown in Fig. 3, the nodes in the gate column are
modeled as composite gates, each consisting of a logic gate
and a splitter. The splitter is integrated into each composite
gate to facilitate clock pulse propagation to the next column.

Given the gate-level pipeline nature of RSFQ circuits, all
nodes are organized into columns in terms of their logic stages,
as illustrated in Fig. 3. PIs are assigned to the first column
(stage 0), and POs are assigned to the last column (stage
lmax). Consequently, L(i) = 0 for all i ∈ I and L(o) = lmax
for all o ∈ O, and the circuit depth is d = lmax − 1. The
ith gate column contains the nodes with logic stage i, i.e.,
Vi = {v|L(v) = i, v ∈ V }. Within each gate column, the
vertical location of node v is denoted by yv , representing
its lower boundary, and its height is indicated by hv . After
dividing all nodes into lmax +1 gate columns, all nodes within
each gate column are shuffled and placed side by side, thereby
completing the initial placement.

2) Clock distribution generation
After determining the initial placement, a heuristic method

is proposed to generate the clock distribution, aiming to min-
imize the potential extension length required for routing. The
strategy involves positioning each node as close as possible to
the vertical center of its data inputs. Specifically, within each
gate column, nodes are first assigned indices in a top-down
order based on their vertical positions. The data inputs of each
node are subsequently tracked column by column, and their
indices are used to determine the source of the clock pulse.
For a node v within the ith column, the indices of all its data
inputs FI(v) are recorded, i.e., {i(u) | u ∈ FI(v)}. The source
of the clock pulse for v is then determined as the node within
the (i−1)th column whose index corresponds to the arithmetic
mean of these indices, i.e.,

i(v) = ⌊
∑

u∈FI(v) i(u)

|FI(v)|
⌋. (6)

For example, in Fig. 3, node g4 has data inputs from nodes
g1 and g2. The indices of g1 and g2 are 1 and 2, respectively.
Thus, the clock pulse for g4 is sourced from the node with an

index of ⌊(1 + 2)/2⌋ = 1, which is g1. For node g5, which
has a single data input g3, its clock pulse is sourced from the
node at index ⌊3/1⌋ = 3, corresponding to g3.

3) Fine-grained DP-based Placement
Following the generation of the clock distribution, the

subsequent objective is to identify the optimal placement of
each node in order to minimize TVWL. However, this task
poses a considerable challenge. When considering only the
order of node arrangement, for nodes located within column
Vi, there exists at least |Vi|! possible arrangements. In a circuit
with n logic stages, this leads to a total of

∏n
i=1 |Vi|! possible

arrangements, which becomes computationally intractable for
large-scale circuits.

To address this challenge, total contribution of node v to
TVWL can be defined as:

lsumv = lvcv + lmc
v +

∑
u∈FI(v)

(lvdu,v + lmd
u,v), (7)

Hence, TVWL can be written as the sum of lsumv for all nodes
according to Equation (4). We observe that the contribution
of nodes within the same column to TVWL is independent of
each other. This means that the placement of one node does
not affect the placement of others within the same column.
This observation allows us to reformulate the placement prob-
lem as a shortest-path problem by introducing a fixed-order
assumption. This way allows us to minimize the sum of lsumv

by identifying the path with the lowest cost in a graph.
To solve this problem efficiently, we propose a DP-based

algorithm that optimizes node placement column by column.
The algorithm assumes that the positions of nodes in other
columns remain fixed, and then determines the vertical po-
sition of each node within the current column from bottom
to top. For the ith column Vi = {v1, v2 . . . vp . . . v|Vi|},
we can set a vertical position range for node vp ∈ Vi of
[yvp−r, yvp+r], where r is the moving radius. Given the fixed
order assumption, each node must be placed in locations that
leave enough space for other nodes within the range [0, H].
This constraint can be expressed as follows:

∀vp ∈ Vi,

p−1∑
j=1

hvj ≤ yvp ≤ H −
|Vi|∑
j=p

hvj . (8)

The candidate locations Yp for node vp are then defined as:

Yp = {yp,mp | yp,mp ∈ [yvp − r, yvp + r] ∩ [
p−1∑
j=1

hvj , H −
|Vi|∑
j=p

hvj ]}, (9)

where mp = 1, 2, . . . , |Yp|, and ∩ means the intersection
of the ranges. The assignment of yp,mp to node vp can
ensure sufficient space for other nodes in the same column
to be placed, under the fixed order constraint. Below, we will
illustrate the details of the DP algorithm for this problem.

The DP-based algorithm constructs a weighted directed
graph Gi for each column Vi, thereby effectively convert-
ing the RSFQ placement problem into a shortest-path prob-
lem. As illustrated in Fig. 5, the graph contains vertices
{s, t} ∩ Y1 ∩ · · · ∩ Yn, where n = |Vi|. The source vertex
s connects to each vertex in Y1, while all vertices in Yn

connect to the target vertex t. Furthermore, a vertex yp,mp

in Yp is connected to a vertex yp+1,mq
in Yp+1 if and only

if yp,mp
+ hp ≤ yp+1,mq

, thus maintaining the fixed order
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Start End

Fig. 5 Trellis diagram for the column-wise placement.

assumption. Each edge connected to yp,mp
has a weight

w(yp,mp), which represents the cost of placing node vp at
yp,mp . For columns with logic stages greater than 0, the
edge weight is defined as w(yp,mp

) = lsump (yp,mp
), where

lsump (yp,mp
) corresponds to the total contribution of node vp

to TVWL when placed as yp,mp
. For the column with a logic

stage of 0, which contains only PIs, the weight is calculated as
w(yp,mp) =

∑
u∈FO(v)

lvdv,u, representing the sum of all vertical

minimum lengths of its outputs. The edges connected to t have
a weight of zero, i.e., w(t) = 0. A path from s to t with the
minimum cost, that is, the sum of edge weights, provides the
optimal configuration for minimizing TVWL for column Vi.
The vertices along this path indicate the optimal locations for
each node vp.

Based on the above analysis, the state transition model of
our DP-based algorithm can be formulated as follows:

dp[p][yp,mp
] =

 min
y<yp,mp−hp−1

(
dp[p− 1][y] + w(yp,mp

), dp[p][yp,mp
]
)
, p > 1

w(yp,mp), p = 1
, (10)

where dp is an array storing the partial cost sums. For
p = 1, dp[p][yp,mp

] is initialized with w(yp,mp
). For p > 1,

dp[p][yp,mp
] stores the minimum cost subsum for placing

nodes v1, · · · , vp when vp is placed at yp,mp
. The minimum

TVWL of this column is given by the minimal value in dp[n].
By backtracking the dp array, the algorithm identifies the
placement associated with the minimum cost.

4) Barycenter-like reordering

In the DP-based placement approach, the relative order of
nodes within each column remains fixed, which significantly
restricts the solution space for minimizing TVWL. To overcome
this limitation, we propose a reordering method that adjusts the
node order across all columns based on the placement results
obtained from the DP process. This reordering aims to achieve
a placement configuration with reduced TVWL when the DP
algorithm is reapplied. However, assessing the quality of re-
ordering in terms of TVWL requires completing the reordering
process and performing subsequent DP calculations, which can
be computationally expensive. To mitigate this, we introduce
a new target metric related to TVWL that can effectively guide
the reordering process.

From Equations (4) and (7), we observe that TVWL depends
on both the vertical minimum length and the vertical matching
length, which are dictated by the relative positions of the
nodes. This suggests that reordering nodes based on their
positional influence and connection lengths could yield signif-
icant improvements. Therefore, we propose a barycenter-like
reordering algorithm to rearrange nodes within each column.

The updated location yv of a node v is calculated as follows:

yv =

∑
u∈FI wu,v · yu∑

u∈FI wu,v
, (11)

where wu,v is a weight associated with the connection from
node u to node v. A higher weight wu,v indicates that the
position yu of node u exerts a stronger influence on the
updated position of node v, thereby encouraging node v to
move closer to yu in the subsequent placement iteration.

A straightforward approach to selecting the weight wu,v for
u ∈ FI(v) is to define it as the sum of the vertical minimum
length and vertical matching length of the connection, i.e.,
wu,v = lvdu,v + lmd

u,v . Using this weight, the updated position
of node v is influenced by all its input connections, with
the connection having the longest length exerting the most
significant impact. This ensures that v is placed closer to its
most influential input, reducing the overall connection lengths.

However, this basic weighting strategy only accounts for
a portion of the delay impact on a node. In practice, the
delay affecting a node is determined by the propagation delay
from a PI to the node’s input pins, rather than solely the
delay from its immediate predecessor. To capture this broader
delay influence, we introduce a refined weighting strategy.
For any u ∈ FI(v), the weight wu,v is defined as the delay
from a PI, passing through node u, and terminating at node
v. This refined weight accounts for the delay of the entire
critical path leading to v, rather than just the local connection
length. Consequently, the input connection corresponding to
the critical path exerts the greatest influence on the updated
position of v.

This delay-aware weighting strategy encourages the place-
ment of v closer to the node u that lies along the critical
path, thereby reducing the delay contribution from the critical
input. By minimizing the delay of the critical connection, other
input connections to v will typically require shorter vertical
matching lengths to satisfy timing constraints. From a broader
perspective, this approach reduces TVWL by balancing timing
requirements across all columns, ensuring that critical paths
are prioritized in the placement process.

B. Routing Method
To address the length-matching routing problem, we propose
a multi-terminal hierarchical length-matching routing method
under the planar Manhattan routing model. This method com-
prises two key steps: (1) track-assignment-based initial routing
and (2) hierarchical routing for length-matching, as illustrated
in the green part of Fig. 4. Below, we provide a detailed
explanation of each step.

1) Track-assignment-based Initial Routing
The first step establishes a preliminary routing path using

a track assignment approach and reallocates tracks between
the top and bottom layers to ensure a conflict-free layout. As
this step does not yet consider length-matching constraints, it
serves as a foundation for the subsequent hierarchical routing
strategy. Furthermore, the extension lengths of multi-terminal
connections are rearranged across the SPL tree to maximize
PTL segment sharing.

1 Acyclic VCG construction
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(a)

(b)

Conflict

(c) (d)
Fig. 6 Track assignment and conflict resolution using the dogleg algorithm
in RSFQ circuit initial routing. (a) The VCG for (c). (b) The VCG for (d)
after net splitting. (c) Track assignment (black line) and the routing overlap
between s1 and s4. (d) Track reassignment based on the dogleg algorithm.

To facilitate routing within the PTL region, a VCG is
constructed, where each vertex represents a specific net, la-
beled as its source label, and edges indicate constraints from
left to right. Fig. 6 provides a routing example involving
six nets, i.e., s1 → {t1,1, t1,2, t1,3}, s2 → {t2,1}, s3 →
{t3,1, t3,2}, s4 → {t4,1}, s5 → {t5,1}, and s6 → {t6,1, t6,2}.
Fig. 6(a) depicts the initial VCG corresponding to Fig. 6(c).
Notably, vertices s1, s2, and s4 form a cycle. Existing routing
approaches commonly employ the left-edge algorithm [42]
to sort the vertical segments of all connections and assign
them to a minimal number of tracks. However, this algorithm
only applies to acyclic VCGs, as it cannot resolve the track
assignment order for nodes within a cycle. Arbitrarily selecting
a node (e.g. s1) from the cycle for track assignment leads
to routing overlap, such as the routing path for s1 and
s4 (see Fig. 6(c)). To resolve this, we employ the dogleg
algorithm [43] to eliminate cycles in the VCG by splitting
the vertical segments of nets. Specifically, for a net si →
{ti,1, ti,2, · · · , ti,ni

}, its vertical segment is split into ni seg-
ments: {si → ti,1, ti,1 → ti,2, · · · , ti,ni−1 → ti,ni

}. Fig. 6(d)
shows the result of net splitting for Fig. 6(c). For example,
the net s1 → {t1,1, t1,2, t1,3} is divided into three segments:
{s1,1 → t1,1, t1,1 → t1,2, t1,2 → t1,3}. Fig. 6(b) shows the
corresponding acyclic VCG, where each node si,j represents
the jth vertical segment of the net from bottom to top.

2 Left-edge algorithm based track assignment
After establishing an acyclic VCG, the left-edge algo-

rithm [42] is employed to minimize the initial routing width.
Fig. 7(a) illustrates an acyclic VCG for the routing nets in
Fig. 7(b). In Fig. 7(a), an edge between s2 and s4 indicates
that the track for s2 must be positioned to the left of s4, as
shown in Fig. 7(b). Tracks corresponding to VCG vertices
without parent nodes are assigned from left to right. Once a
net is assigned to a track, its corresponding vertex is removed
from the VCG. Therefore, the number of used tracks can be
set as the minimum width wT

min of the PTL region for the
given nets. However, considering the routing length required
for each net, the minimum width wL

min can be defined as:

wL
min = ⌊

m∑
i=1

(lvneti + leneti)

2 ∗ hregion
⌋, (12)

where hregion is the height of the PTL region, lvneti and

(a)

 (26)
 (24)

 (0)
 (12)

 (32)

 (18)

 (12)
 (0)
 (6)
 (0)

(b) (c) (d)
Fig. 7 (a) The VCG constructed for the nets in (b). (b) Source and sink
pin positions of connections and the initial track assignment. Result of track
reassignment on the (c) top and (d) bottom layer corresponding to (b).

(a)

Conflict

(b) (c)
Fig. 8 (a) The VCG constructed for the nets in (b). (b) Horizontal conflict with
track assignment model [15]. (c) Result of our two-layer track reassignment.

leneti are the vertical length and extension length of neti,
respectively. Therefore, the initial routing width can be set to
max (wT

min, w
L
min). Notably, for convenience, the initial width

in the figures in this paper is set to wT
min.

3 Two-layer track reassignment
In the two-layer planar Manhattan routing model, tracks are

subsequently reassigned between the top and bottom layers. In
existing work [15], tracks in odd (even) columns are assigned
from left to right (right to left) on the top (bottom) layer.
However, this disrupts the ordered routing of tracks, leading
to horizontal conflicts, as shown in Fig. 8(b). To address this,
we propose a novel reassignment strategy: the first half of the
tracks is allocated to the top layer, while the second half is
assigned to the bottom layer, as shown in Fig. 8(c). The results
of our track-assignment-based initial routing on both layers are
illustrated in Figs. 7(c) to 7(d). Finally, vertical segments are
connected to their respective source and sink pins.

4 SPL placement and extension length rearrangement
Effective SPL placement in the PTL routing region reduces

routing width by optimizing connection distribution across
hierarchical levels of SPL trees. Following the track assign-
ment, SPLs are placed at branch points of multi-terminal
interconnects. The required extension lengths are rearranged
systematically through the SPL tree. To minimize routing
width, we employ a greedy optimization strategy that pri-
oritizes detour insertion in lower-level PTL segments first.
This maximizes shared routing utilization by leveraging path
overlaps across multiple levels.

Fig. 9(c) illustrates the SPL tree for the 4-pin net s1 →
{t1,1, t1,2, t1,3}. Internal nodes represent SPLs, and edges ter-
minating at leaf nodes have initial extension lengths matching
their source-to-sink path requirements. Other edges are as-
signed initial extension lengths based on structural constraints,
where the maximum allowable length equals the minimum
extension length of subsequent edges sharing the same node.
For example, adding 12 units to edge s1 → l3 in Fig. 9(c)
adjusts the extension lengths for level 2 to 0 and 0, and for
level 3 to 0 and 12. Fig. 9(a) and Fig. 9(b) depict PTL segments
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Fig. 9 PTL segments with tree levels and available regions during the first iteration at level 1 on (a) top and (b) bottom layers. (c) Splitter tree and extension
lengths rearrangement of s1 → {t1,1, t1,2, t1,3}. (d) The capacity-constrained flow graph during the first iteration at level 1. Maximum flow-based detour
insertion for level 1 on (e) top and (f) bottom layers. (g) Improved method to search available regions.

Unsatisfied connections Top/Bottom PTL segments

Identify PTL segments of level i

Define the legal available regions 

Maximum flow-based detour insertion

All segments satisfied?  New available region?

i++<Max level?
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No
PTL segments including the inserted

detouring paths for the given connections
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(b)
Fig. 10 (a) The flow of hierarchical maximum flow-based detour insertion.
(b) Assignment of six legal available regions onto four connections, s1, s3,
s4 and s6.

at three levels in the top and bottom layers, respectively. Levels
1, 2, and 3 are marked by blue, green, and orange, while gray
blocks indicate available regions for detours for a single PTL
segment. The height (width) of these regions must be even for
vertical (horizontal) segments.

2) Hierarchical Routing for Length-Matching
To integrate detours for PTL connections while ensuring

adherence to length-matching requirements derived from the
initial routing results, we propose a hierarchical routing strat-
egy. A maximum-flow-based model is applied at each PTL
segment level to implement detour insertion, thereby satisfying
the length-matching constraints. For connections that fail to
meet their specified extension lengths, an iterative PTL region
extension strategy is employed to resolve the issue.

1 Hierarchical maximum flow-based detour insertion
The flow of hierarchical maximum flow-based detour inser-

tion is displayed in Fig. 10(a). To maximize the utilization
of unoccupied regions for detour routing, we first identify
available regions. For horizontal PTL segments, available
regions are identified through a top-to-bottom analysis (e.g.,
regions A13 and A11 for segment s1 → l3 in Fig. 9(b)).
For vertical PTL segments, regions are identified from left
to right (e.g., regions A01 and A00 for segment s4 → t4,1
in Fig. 9(a)). Segments requiring longer extension lengths are
prioritized for region assignment to minimize routing width.
Regions are not assigned to PTL segments that have already
achieved length-matching, such as s5 → l0 in Fig. 9(a).
To optimize routing resources, we allow multiple available

regions per PTL segment. This contrasts with the approach in
[15], which restricts each segment to one region. For instance,
in Fig. 9(g), our method enables P1 to use regions A1, A2, and
A3, thereby improving the optimization of the maximum flow
model. Moreover, mutual exclusion occurs when two regions
in opposite directions are available for one PTL segment.
Assigning both (e.g., A01 and A00 to s4 → t4,1) makes detour
insertion infeasible. Thus, the smaller region is marked as
illegal for this iteration. If these two regions are equal in size,
one is randomly marked as illegal. In Figs. 9(a) to 9(b), A01

and A11 are illegal available regions.
After identifying all legally available regions, a capacity-

constrained flow graph can be constructed for unsatisfied
connections. The maximum flow algorithm [44] is applied to
determine the optimal PTL extension lengths for each region.
The vertex set of the flow graph consists of a source, a sink, a
set of unsatisfied connections, and a set of available regions.
A directed edge connects the source to each unsatisfied net,
with its capacity set to the required PTL extension length for
the net. Each unsatisfied net also has a directed edge to its
available regions, with the edge capacity set to the required
PTL extension length for the net. All available regions have
a directed edge to the sink, with the edge capacity set to the
area of the corresponding region. For a detailed explanation
of the graph’s construction, refer to [15].

The maximum flow algorithm is iteratively executed at each
PTL segment level until all connections meet length-matching
constraints or no available regions remain for current-level
PTL segments. A new capacity-constrained flow graph is
constructed in each iteration by identifying new available
regions. For example, Figs. 9(a) to 9(b) show available regions
during the first iteration at level 1, leading to the flow graph
in Fig. 9(d). The maximum flow is then determined to be 30,
as shown in Fig. 10(b). The flow on the edge connecting an
available region to the sink represents the detour length within
the available region. As shown in Figs. 9(e) to 9(f), the PTL
segments at level 1 terminate after three iterations, result in a
16-unit extension being added to s3 → l1. This reduces the
required extension lengths for s3 → t3,1 and s3 → t3,2 by 16
units each. Once detours are inserted for a specific level, any
remaining unsatisfied PTL segments are promoted to the next
level. This process continues until detours are inserted for the
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Fig. 11 Results of splitter tree-based hierarchical routing for length-matching on (a) top layer and (b) bottom layer for level 3. Results of the PTL region
extension algorithm on (c) top and (d) bottom layer, with the routing width increased by 4.

highest-level PTL segments.
2 PTL region extension for unsatisfied connections

After routing using the initial width, some connections
may still fail to meet length-matching constraints. As shown
in Figs. 11(a) to 11(b), the unsatisfied connections include
s1 → t1,3, s3 → t3,1, s3 → t3,2, and s4 → t4,1. To address
this, we propose a PTL region extension strategy. This method
expands the PTL routing region by adding two columns at the
right boundary and allocating two-unit horizontal segments on
the top layer for satisfied connections. Unsatisfied connections
are sorted in descending order of their remaining extension
lengths. The longest connection is prioritized, with detours
inserted in the bottom layer if feasible; otherwise, the pin is
connected in the top layer. To determine the PTL insertion
direction, we analyze the first two unsatisfied connections in
the sorted set. The insertion direction is upward if the first
connection has more available space above and satisfies the
condition row1 + h < row2, where h denotes the height of
the insertion space, and row1 and row2 are the sink rows
of the first and second connections, respectively. Conversely,
downward insertion is chosen when more space is available
below and the condition row1 − h > row2 is satisfied.

Next, it will iteratively perform available region search and
maximum flow-based detour insertion until all space is utilized
or all connections meet their required lengths. To reduce the
time overhead, we use a parameter Im to control the number
of iterations. When Im = 0, it will iteratively run until no
available regions can be found or all connections are satisfied.
If Im > 0, the iterations will terminate after Im runs or when
all connections are satisfied, whichever occurs first. If any
connections remain unsatisfied, the process iterates from the
initial expansion step to ensure all connections are eventually
satisfied. Figs. 11(c) to 11(d) show the final routing results for
both layers with Im = 0, demonstrating successful satisfaction
of the length-matching constraint after two iterations of PTL
region extension.

C. Time Complexity Analysis

The time complexity of our placement algorithm is analyzed as
follows. During the initial placement, each node is assigned
a random location, which requires O(|V |) time. During the
clock distribution generation, each node records its index in its
FO(v) with an extra O(|V |) space for sorting, and assigning

the clock source can be achieved in O(|V | · log |V | + |V |)
time. Next, in the fine-grained DP-based placement, we in-
troduce a hyperparameter r. According to Equation (10),
the time complexity of this step is O(|V | · r2). Notably,
a large value of r is unnecessary to achieve good perfor-
mance. Then, the barycenter-like reordering phase updates
node locations based on their inputs. Since each node has
at most three inputs, updating the location of a single node
has linear-time complexity. Additionally, the sorting process
in this phase requires O(|V | · log |V |) time. Overall, the time
complexity for one iteration of the placement algorithm is
O(|V |+ |V | ·r2+ |V | · log |V |). Since r is a small constant (set
to 50 in our experiments), this simplifies to O(|V | · log |V |).
Considering that the algorithm runs for I iterations (set to 100
in our experiments), the total time complexity of our placement
algorithm is O(I · |V | · log |V |).

The time complexity of our routing algorithm is analyzed
as follows. When routing between two adjacent gate columns,
the construction of an acyclic VCG takes O(n) time, where n
is the number of connections within the PTL region. Next,
it takes O(n log n) time to perform track assignment for
the vertical segment of these connections using the left-edge
algorithm [42], followed by taking O(n) time to assign these
vertical segments to feasible tracks on two routing layers.
Then, SPL placement and extension length rearrangement
take O(n) time. Therefore, the time complexity of the track-
assignment-based initial routing is O(n · log n). Subsequently,
constructing the capacity-constrained flow graph for unsatis-
fied connections and available regions requires O(n2) time.
Additionally, determining the optimal PTL extension lengths
for each region using the maximum flow algorithm also takes
O(n2) time. Thus, the time complexity of hierarchical maxi-
mum flow-based detour insertion is O(n2). When unsatisfied
connections exist, PTL region extension requires O(n · log n)
time. This process iterates until all connections satisfy the
length-matching constraints. Overall, the total time complexity
for routing between two adjacent gate columns is O(N · n2),
where N denotes the number of iterations.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup
The JPnR framework was implemented with Python for place-
ment and C++ for routing. Experiments were conducted on an
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TABLE I Comparison between our placement method and the baseline.

Circuit S G
SA Our placementT=100 T=1000

Time(s) TVWL Time(s) TVWL Time(s) TVWL

c432 27 1015 6.328 538841 11.328 522028 6.156 436435
c499 12 604 3.500 313421 7.203 315317 3.406 251154
c880 28 1376 23.063 818409 16.421 808452 8.688 601397

c1355 12 635 12.094 372912 6.593 361474 3.219 272560
c1908 22 1149 16.578 716500 8.188 662313 6.981 423619
c3540 33 2279 129.031 5314391 62.797 5212187 22.828 2147667
c5315 29 5503 220.734 16526683 165.453 16012675 144.531 5843549
c6288 76 4765 21.969 4456708 22.539 4139557 16.812 4404936
c7552 48 7571 156.156 16680602 212.938 16389954 89.000 4677287

int2float 16 494 14.748 272699 21.118 272973 3.844 201678
sin 169 16516 1390.297 139084975 1283.406 135734764 520.593 25240196

priority 215 17778 1254.225 15780332 837.100 15136645 280.921 11050073
adder 255 49278 3105.877 69742105 6860.039 69716344 392.328 21588396

multiplier 257 77538 17606.856 1164910327 19539.981 1194509219 503.46875 521097358
max 207 83933 4850.391 396901851 7550.328 384329568 655.1875 77790331

Ave. ratio / / 5.49 2.38 6.36 2.32 1 1
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Fig. 12 TVWL changes over time for (a) sin and (b)
max circuits, comparing our placement method with
SA-based methods at different initial temperatures.
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Fig. 13 Composite gates using the ColdFlux library [17], with a width of
90 µm and built-in PTL drivers/receivers in both logic gates and SPL.

Intel(R) Xeon(R) Gold 5218R CPU with 128 GB of memory.
For evaluation, we utilized circuits from the ISCAS85 [11]
and EPFL benchmarks [12], which varied in logic stages and
gates, with the largest circuit containing up to 207 logic stages
and 83933 logic gates. These gates were composite gates,
exhibiting a uniform layout width of 90 µm after composition
(as shown in Fig. 13). Size and timing parameters for these
composite gates were computed using data from the RSFQ cell
library [17]. Unless specified otherwise, experimental results
in this section were obtained using these composite gates.

B. Placement Evaluation
To assess the proposed placement method, we conducted a
comparative evaluation against the baseline, a modified version
of Kito’s SA-based method [22]. To ensure a fair compari-
son, we introduced two key modifications to Kito’s original
method. First, we updated its objective metric as TVWL.
Second, we paired two gates within the same column and
allowed modifications to multiple pairs in a single placement
perturbation, thereby enhancing its efficiency. Regarding the
remaining SA settings, we set the number of iterations to
10, the cooling ratio to 0.95, and the termination criterion
to a temperature threshold of 0.01. Our placement method
was executed with parameters I = 100 and r = 50, and
automatically terminated if no improvement was observed over
five consecutive iterations.

TABLE I presents a comparative analysis of placement
quality and runtime between our placement method and the
modified SA-based method, where “S” and “G” refer to the
number of logic stages and gates for each circuit. The initial
annealing temperatures for the SA-based method were set to
100 and 1000, respectively. Overall, our placement method
demonstrated average reductions of 43.91% and 42.23% in
TVWL, alongside improvements in runtime of 62.39% and
70.48%, respectively. Furthermore, Fig. 12 visualizes how the

TVWL evolves during the execution of our placement method
and the SA-based method for the sin and max circuits from
the EPFL benchmark [12]. The results clearly demonstrate that
our placement method achieves rapid convergence to superior
solutions compared to the baseline.

C. Routing Evaluation

We first evaluated our routing algorithm with Im = 0 using
randomly generated testcases from [13], which consist of
2-pin connections with pre-allocated SPLs and utilize two
routing layers within the PTL region. To create multi-terminal
connections, we converted paired adjacent 2-pin connections
into 3-pin connections by randomly selecting one source.
It is important to note that while JPnR can accommodate
SPLs of any size, for a fair comparison with existing routing
methods [13]–[16], we assumed in this subsection that splitters
occupy one unit within the PTL routing region and are placed
in an additional gate column, increasing the routing width by
one unit.

TABLE II presents the results of our routing algorithm
and the baselines, where “NC” represents the number of
connections in a PTL routing region, “H” represents the
height of a PTL routing region, “Ave” represents the average
extension length of a PTL routing region, “Max” represents
the maximum extension length of a PTL routing region,
“RW” represents the routing width of a PTL routing region,
and “Time” indicates the runtime in seconds for evaluating
each case. The results demonstrate that our routing algorithm
achieves a smaller routing width in a reasonable runtime.
Overall, our proposed algorithm achieved average reductions
of 38.20%, 38.29%, 21.52% and 7.38% in routing width com-
pared with Kito’s [13], Kou’s [14], and Yan’s [15], [16] routing
algorithms, respectively. Our proposed algorithm outperforms
JRouter [45] in all testcases from [13] except one, where the
track assignment difference due to the dogleg algorithm [43]
causes slightly worse performance.

We further evaluated our routing algorithm using the
int2float circuit from the EPFL benchmark [12] to assess its
effectiveness in handling VCG cycles. The circuit consists of
16 PTL routing regions (RR1 to RR16), each with a height
of 668. The routing results for JRouter and our router are
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TABLE II Experimental results of our routing method on the testcases from [13].

NC H Ave Max Kito’s [13] Kou’s [14] Yan’s [15] Yan’s [16] JRouter [45] Our router
RW Time(s)1 RW Time(s)1 RW Time(s)2 RW Time(s)2 RW Time(s)3 RW Time(s)3

15 200 43 105 15 0.73 15 0.23 12 0.13 11 0.11 9 0.02 9 0.03
15 200 44 122 15 1.10 17 0.10 12 0.14 11 0.12 9 0.04 9 0.04
15 30 8 26 17 2.76 17 0.03 14 0.11 11 0.10 10 0.02 10 0.02
15 30 18 79 23 8.47 23 0.07 16 0.13 13 0.11 11 0.02 11 0.03
25 50 12 46 23 4.17 24 0.14 20 0.46 17 0.39 17 0.03 17 0.05
25 50 16 51 25 108 24 0.12 20 0.51 18 0.41 18 0.04 18 0.04
40 80 16 49 29 348 29 0.35 24 2.17 20 1.95 17 0.04 17 0.07
40 80 19 56 31 1346 33 0.43 24 2.24 21 2.02 20 0.22 20 0.23
40 200 40 168 29 1345 30 0.59 23 0.79 19 0.63 19 0.05 19 0.09
40 200 42 182 31 1346 30 0.60 23 0.84 19 0.68 19 0.08 21 0.12
50 100 23 99 43 1346 40 2.11 33 4.25 27 2.73 27 0.16 25 0.18
50 100 25 111 44 1346 40 2.09 33 4.39 27 2.82 24 0.16 24 0.23

Average routing width (RW) ratio 1.64 1.64 1.29 1.09 1.00 1
1 Runtime on Intel(R) Xeon(R) 2.60GHz CPU machine with 128GB memory.
2 Runtime on Intel Core i7-3770 3.40GHz CPU machine with 32GB memory.
3 Runtime on Intel(R) Xeon(R) Gold 5218R 2.10GHz CPU with 128GB memory.

TABLE III Routing results for int2float.
R Nets Ave Max JRouter [45] Our router

RR1 11 233.89 579 26 26
RR2 38 91.21 278 37 34
RR3 70 68.56 309 N/A 26
RR4 91 80.51 477 37 37
RR5 108 95.68 568 N/A 35
RR6 111 112.48 579 40 40
RR7 95 108.22 735 37 37
RR8 77 91.46 422 40 38
RR9 58 83.55 772 24 24
RR10 43 90.88 607 31 31
RR11 35 60.78 668 20 16
RR12 26 84.45 552 19 19
RR13 21 55.13 326 13 13
RR14 18 77.21 425 18 18
RR15 16 87.11 615 11 11
RR16 14 46.00 112 9 9

* N/A: Fails to handle cyclic VCGs, causing an infinite
loop and no solution. Fig. 14 Layout of int2float.

detailed in TABLE III, where “Nets” refers to the total number
of nets, and “Ave” and “Max” represent the average and
maximum extension lengths per routing region, respectively.
Notably, JRouter failed to route in regions RR3 and RR5 due to
VCG cycles, whereas our method successfully resolved these
failures while reducing the average routing width by 2.36%.
Fig. 14 shows the resulting layout of the int2float circuit, with
an area of 13.89mm× 5.59mm (77.64mm2).

D. JPnR

Accurately estimating routed wirelength during placement
is challenging because the SPL tree shape and SPL cell
locations are determined only during routing. To address this,
incorporating routing information into placement is crucial for
accurate wirelength estimation. To mitigate runtime overhead,
we use initial routing results to guide the placement optimiza-
tion process (orange arrow in Fig. 4). We refer to this enhanced
placement and routing flow as HQ-JPnR. Specifically, in HQ-
JPnR, the placement cost is set to the total wirelength (TWL),
including both vertical and horizontal wires, obtained after
initial routing. Im is set to 1 in both HQ-JPnR and JPnR.
The effectiveness of JPnR and HQ-JPnR for RSFQ physical
design is demonstrated through end-to-end results summarized
in TABLE IV. The table lists circuit layout width, height,
total area, TWL, and runtime. On average, HQ-JPnR reduces
TWL by 4.56% and circuit area by 3.69% compared to JPnR,

highlighting the benefits of integrating routing information
into placement. Notably, HQ-JPnR requires less runtime on
most circuits than JPnR, possibly because the introduction
of routing information during placement results in a routing-
friendly placement, thereby reducing the iterations of PTL
region extension for unsatisfied connections.

VII. CONCLUSION

This paper presented JPnR, a length-matching physical design
framework for RSFQ circuits. JPnR achieves precise timing
alignment by considering both clock and data connections dur-
ing placement and routing. The placement process employs a
heuristic clock distribution method, fine-grained dynamic pro-
gramming to minimize vertical wirelength, and a barycenter-
like reordering for further wirelength reduction. The routing
process begins with track assignment using the dogleg and
left-edge algorithms to minimize routing width and avoid
horizontal conflicts. It then applies a splitter tree-based hierar-
chical routing algorithm to insert detours for PTL connections
and extends routing regions for unsatisfied connections. Our
evaluation of JPnR on multiple circuits demonstrated its end-
to-end effectiveness, showcasing significant improvements in
RSFQ physical design under length-matching constraints.
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