
JPlace: A Clock-Aware Length-Matching Placement
for Rapid Single-Flux-Quantum Circuits

Siyan Chen1,2†, Rongliang Fu3†, Junying Huang4∗, Zhimin Zhang4, Xiaochun Ye4, Tsung-Yi Ho3, Dongrui Fan5

1ShanghaiTech University, Shanghai, China
2Shanghai Innovation Center for Processor Technologies, Shanghai, China

3Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
4SKLP, Institute of Computing Technology, CAS, Beijing, China

5University of Chinese Academy of Sciences, Beijing, China

Abstract—Superconducting rapid single-flux-quantum (RSFQ)
logic has emerged as a promising candidate for future computing
technology, owing to its low power consumption and high fre-
quency characteristics. Given its ultra-high frequency operation,
achieving precise timing alignment is crucial for RSFQ circuit
physical design. To address the timing issue, this paper introduces
JPlace, a clock-aware length-matching placement framework
for RSFQ circuits. JPlace simultaneously addresses data and
clock signal length matching, effectively ensuring accurate timing
alignment and mitigating timing alignment challenges during the
routing phase. We propose a heuristic method for constructing the
clock distribution and a dynamic programming-based approach
for minimizing the total vertical wirelength while maintaining
fixed placement orders. Additionally, we introduce a barycenter-
based reordering method to further explore the solution space and
reduce wirelength. Experimental results on the RSFQ benchmark
demonstrate the effectiveness and efficiency of JPlace.

Index Terms—superconducting logic, RSFQ, placement

I. INTRODUCTION

The rapid single-flux-quantum (RSFQ) [1] circuit is a type
of Josephson Junction (JJ)-based superconducting integrated
circuit that holds great promise for future high-performance
computing systems. The benefits of RSFQ circuits, includ-
ing their remarkable ultra-fast switching speed and ultra-low
switching energy, have attracted significant attention. It has
been demonstrated that several RSFQ microprocessors have
achieved high clock frequencies at 25-50 GHz [2]–[4]. Nowa-
days, high-performance large-scale RSFQ circuits, such as
hardware accelerators for machine learning [5]–[7], can also
operate at frequencies in the tens of GHz. Although supercon-
ducting RSFQ circuits share similarities in design, manufactur-
ing, and testing techniques with contemporary complementary
metal oxide semiconductor (CMOS) integrated circuits, there
are notable differences between the two that render existing
CMOS electronic design automation (EDA) tools unsuitable
for direct application in the design of RSFQ circuits.

From the perspective of physical design automation, some
distinctive characteristics of RSFQ circuits stem from their
pulse-driven nature, with the primary differences from CMOS
circuits being as follows: 1) Clock-driven gate-level pipelining.
In RSFQ circuits, almost all logic gates operate in synchro-
nization with the clock. This means that nearly every RSFQ

† Equal contribution. ∗ Corresponding author: huangjunying@ict.ac.cn.

logic gate possesses a latching function, enabling gate-level
pipelining. This structural feature of RSFQ circuits not only
facilitates high clock frequencies but also imposes additional
constraints on placement and routing methods, such as the
requirement to arrange logic gates in columns according to their
logical stage. 2) Pulse-driven timing scheme. Unlike traditional
CMOS technology, the frequency of RSFQ circuits is deter-
mined by the time difference between the arrival of data and
clock pulses. The frequency will decrease significantly if there
is a significant difference in the arrival times of data and clock
pulses at RSFQ logic gates. Therefore, matching the arrival
times of data and clock pulses is crucial for maximizing the
frequency of RSFQ circuits. Consequently, timing alignment is
a critical consideration in the physical design of RSFQ circuits.

Research in the field of RSFQ placement has been relatively
limited, with notable works including [8]–[10]. Kito et al. [8]
introduced a simulated annealing (SA)-based RSFQ placement
algorithm. However, the SA-based approach requires a long
runtime, particularly for large-scale circuits, due to the compu-
tational nature of SA. Moreover, this method did not consider
the issue of RSFQ timing alignment. Yan [9] proposed a fixed-
order placement technique for RSFQ circuits that is faster than
SA. Nevertheless, this approach enforces a static order for
logic gates, meaning the relative positions of the gates remain
unalterable during placement, solely focusing on optimizing
their absolute positions. This constraint limits the exploration
of potential solution spaces. Furthermore, this method focuses
on matching the lengths of data signals without addressing the
length matching of clock signals. This significantly escalates
the complexity of timing alignment during the routing phase,
particularly for complex and large-scale RSFQ circuits. Ki-
tamura et al. [10] introduced a length-matching-aware RSFQ
placement approach, aiming to minimize the sum of maximum
vertical distances between connected gates to mitigate wire-
length extension in wirelength matching. Unfortunately, this
method did not address clock line length matching either.

In this paper, we propose a clock-aware length-matching
RSFQ placement algorithm named JPlace, to tackle the timing
alignment issue in RSFQ circuits. This innovative approach
simultaneously considers both data and clock signal length
matching, thereby achieving genuine timing alignment and
alleviating the timing alignment challenges during the routing

phase, especially for complex and large-scale RSFQ circuits.
Specifically, we make the following contributions:

• We propose JPlace, a clock-aware length-matching place-
ment approach that considers the timing constraints of
RSFQ circuits. This method employs a heuristic strategy
to efficiently generate the clock distribution within a multi-
stage pipelined architecture.

• We present a dynamic programming-based placement tech-
nique that identifies the optimal placement for each gate
within its respective column for the given gate order.

• Moreover, we propose a barycenter-like reordering method
to fine-tune the relative positions of gates within the same
column, resulting in a further reduction in wirelength.

• Experimental results on the ISCAS85 [11] and EPFL [12]
benchmarks show the effectiveness and efficiency of JPlace,
an average reduction of 49.00% and 48.15% in the total
vertical wirelength, respectively, compared to the baseline.

II. PRELIMINARY

A. RSFQ Logic

RSFQ logic gates usually consist of inductors, resistors, and
JJs. These JJs enable the data transmission as voltage pulses
and the storage of magnetic flux quanta within the RSFQ
gates. In contrast to CMOS circuits, which have higher fanout
capabilities, RSFQ circuits require a splitter (SPL) when the
fanout of a gate exceeds 1. The SPL divides one pulse into
two or three, depending on its specific design. Most RSFQ
gates are synchronized with a clock pulse to transfer the stored
data to the adjacent gates. In other words, nearly all RSFQ
gates have the latch functionality, allowing them to be pipelined
without additional delay-flip-flops (DFFs). With this property,
it is natural to adopt RSFQ pipelined placement based on the
logical stage of each logic gate. The logical stage of one gate
represents the maximum number of clocked gates in any path
from any primary input (PI) to it. All the paths share the
same number of clocked gates due to path balance during logic
synthesis [13]. In the pipelined RSFQ layout, the logical stage
for each logic gate is calculated first. Then, the logic gates are
placed in columns according to their logical stages. Logic gates
with the same logical stage are placed within the same column.
These columns are ordered from left to right in ascending order
of the logical stage, resulting in a multi-stage pipelined layout.

B. Timing Constraints

RSFQ logic offers superior performance compared to CMOS
logic due to its utilization of quantized voltage pulses for rapid
switching in digital data generation. RSFQ circuits employ
concurrent-flow clocking as the representative clocking scheme
[15], which effectively conceals data propagation delays by syn-
chronizing the clock pulse with the data. The timing constraint
for concurrent-flow clocking is depicted in Fig. 1(a). To ensure
correct operation, the arrival time of the clock and data pulses
must satisfy:

tc + thold < tdata < tc + tT − tsetup, (1)

which tc and tdata are the arrival time of the clock pulse and the
data pulse at an RSFQ gate, respectively. Besides, three crucial

thold tsetup

tdata

clk

data

tT
tc

(a)

Gate

column

Gate

column

Gate

column

SPL tree SPL tree SPL tree
clk

Inputs

Logical stage 1 i n... ...

(b)

SPL

tree

Gate

column

Gate

column

Gate

column

1 i n... ...SPL

Inputs

clk

(c)

Fig. 1. (a) RSFQ logic timing constraints. (b) and (c) are the tree-based clock
distributions for RSFQ circuits by Kito et al. [8] and Yan [14], respectively.

timing parameters must be considered: tsetup, thold, and tT .
tsetup denotes the minimum time that the input data pulse must
be stable and available before the clock pulse. thold denotes the
minimum time that the input data pulse must remain stable and
unchanged after the clock pulse. tT denotes the clock cycle.

In RSFQ circuits, the clock pulse should be delivered to
nearly all logic cells in the design. Therefore, clock distribution
is essential in the physical design of RSFQ circuits, as it
requires significant routing resources and consumes consider-
able power. Previous studies have proposed various tree-based
clock distribution methods for RSFQ circuits. Kito et al. [8]
introduces a multi-level distribution tree for clock distribution.
As shown in Fig. 1(b), the clock pulse from the PI enters an SPL
tree and gets divided into multiple clock pulses that propagate
to the gates in the current column and the SPL tree in the
next column. However, since the clock pulses of all gates in
one column source from the same SPL tree, the nets between
the SPL tree’s output and the gates’ clock pin require lengthy
wires, resulting in increased routing costs. Yan [14] proposes
an alternative clock distribution method, as shown in Fig. 1(c),
which reduces the wirelength of the clock nets. The clock pulse
from the PI first flows into an SPL tree, similar to Kito’s clock
tree, generating clock pulses for the gates in the first column.
For the remaining columns, the clock pulse passes through the
preceding column using SPLs and propagates to the adjacent
succeeding column. This paper adopts this clock distribution
framework and proposes a heuristic approach to generate the
clock distribution.

C. Length-Matching RSFQ Placement

The primary objective of RSFQ placement is to produce a
layout that meets timing constraints while minimizing wire-
length. The timing constraint ensures the circuit is functionally
correct, and the minimal wirelength corresponds to a reduced
area of routing regions, ultimately leading to a smaller layout
area. In RSFQ circuits, the timing constraint can be met by
extending the length of passive transmission lines (PTLs). PTL,
a passive routing cell, is commonly used as the interconnect
in RSFQ circuits due to its ability to enhance the operational
margin. The delay of a PTL can be roughly proportional
to its length. Consequently, the need for timing adjustment
can be translated into length-matching requirements in the

placement process. To meet the timing requirements between
the arrival of the clock and data pulses, the logic gates need
to satisfy Equation (1). Considering that the delay of a PTL is
approximately proportional to its length, timing constraints can
be transformed into a length-matching problem:

lc + lhold < ldata < lc + lT − lsetup, (2)

where lc and ldata refer to the PTL lengths of the clock con-
nection and data connection, respectively, with corresponding
delays tc and tdata. Besides, lhold, lT , and lsetup represent the
PTL lengths associated with thold, tT , and tsetup, respectively.

To offer better tolerance to process variations, we aim for the
data pulse to arrive at the midpoint of the range, which means

ldata =
1

2
[(lc + lhold) + (lc + lT − lsetup)] = lc +∆l, (3)

where ∆l = lT−lsetup+lhold

2 represents the extra PTL length of
the data connection compared to the clock connection.

Prior research has introduced the length-matching placement
method for RSFQ circuits [8], [9], aiming to optimize the
sum of the vertical minimum length and vertical matching
length of data nets. The vertical minimum length pertains to
the overall vertical Manhattan distance between logic gates,
while the vertical matching length signifies the total length
of the detour implemented to satisfy timing constraints. The
connections between adjacent columns have the same hori-
zontal length. Therefore, when considering minimum length
optimization, previous approaches focus on the vertical length,
referred to as the vertical minimum length, for each connection.
Besides, these placement methods all assume that detour occurs
exclusively in the vertical direction, hence they utilize the
vertical matching length to represent the matching length. This
paper also follows the same assumption. In their research, the
matching length is used to fine-tune the arrival time of data
inputs at a gate. Following length-matching, the objective is to
achieve simultaneous arrival of all data inputs at an individual
gate. However, their placement approaches do not take clock
nets into account. In reality, a placement result that exclusively
prioritizes data nets may not be optimal for clock nets, as the
timing constraint, as outlined by Equation (3), is jointly defined
by both the clock net and the data net. Given this context, we
aim to propose a clock-aware length-matching RSFQ placement
method that integrates the influence of the timing constraint
during the placement process.

III. PROBLEM FORMULATION AND TERMINOLOGY

An RSFQ circuit can be represented by a directed graph
G(V,E). E is the set of all nets, including data nets Ed and
clock nets Ec. The node set V includes logic gates, PIs, and
primary outputs (POs). The logic gate node corresponds to a
logic gate component, which consists of a logic gate and an
SPL, as illustrated in Fig. 2. All nodes are grouped into n
columns in terms of their logical stages. The logical stages of
PIs and POs are 0 and n + 1, respectively. For node v, sv
denotes its logical stage. The nodes with a logical stage of i
are contained in the set Vi = {v|sv = i, v ∈ V }. Besides,
a directed edge (u, v) ∈ E indicates the flow of data from

g1 (1)

g2 (2)

g3 (3)

g4 (1)
g6 (1)

Intra-column

gate index

Multiple fan-outs

g5 (2)

g7 (2)

l4

vc

l1,4

vd

logical

stage i - 1 i i + 1

hg4

yg4

Data net

A node

Clock net

Fig. 2. Partial schematic of circuit placement. g4 has a height of hg4 and
locates at yg4 . Its data inputs come from g1 and g2, and its output flows to
g6 and g7, i.e., FI(g4) = {g1, g2} and FO(g4) = {g6, g7}. The vertical
minimum length of data connection from g1 to g4 is lvd1,4. The vertical minimum
length of clock connection of g4 is lvc4 .

node u to node v. For node v, Ei(v) represents the set of its
input edges, while Eo(v) represents the set of its output edges.
The set FI(v) = {u|(u, v) ∈ Ei(v)} contains nodes that serve
as data inputs to node v, and FO(v) = {u|(v, u) ∈ Eo(v)}
contains nodes that are data outputs of node v. The location of
node v within a column, marked as yv , represents the location
of the node’s lower boundary. Besides, we use hv to represent
the height of the node v.

As discussed in Section II-C, the optimization goal of the
length-matching placement includes two parts: minimum length
and matching length. So, the clock-aware length-matching
placement of RSFQ circuits can be formulated as follows:
• Input:

1) A path-balanced RSFQ circuit G(V,E).
2) An RSFQ cell library including physical and timing

parameters of the logic gates, SPLs, and PTLs.
• Output:

1) A legal yv for ∀v ∈ Vi, i ∈ [0, n].
2) The clock distribution of the circuit.

• Constraints:
1) Timing constraints defined by Equation (3).
2) Overlap constraints: For two nodes u and v in the same

column, yu + hu ≤ yv if yu ≤ yv .
3) For every node v ∈ V , yv ≥ 0 and yv +hv ≤ H , where

H is the maximum height among all columns.
• Goal:

Our goal is to minimize the total vertical wirelength (TVWL)
of the placement, which is the sum of the vertical minimum
length and the vertical matching length, formulated as:

TVWL =
∑
v∈Vi

i∈[0,n]

lvcv + lmc
v +

∑
u∈FI(v)

(
lvdu,v + lmd

u,v

) , (4)

where lvcv and lmc
v are the vertical minimum length and

vertical matching length of node v’s clock connection, and
lvdu,v and lmd

u,v are the vertical minimum length and vertical
matching length of the data connection between u and v.

IV. JPLACE

To solve the above RSFQ placement problem, we propose
a clock-aware length-matching RSFQ placement framework
with four steps: 1) initial placement; 2) clock distribution

Start

Initial placement (i = 0)

i++ < I Barycenter-like reordering

Fine-grained dynamic

programming-based placement

End

Yes

No

Clock tree generation

Fig. 3. The flow of JPlace, where I is the number of iterations.

generation; 3) fine-grained dynamic programming (DP)-based
placement; and 4) barycenter-like reordering. The overall flow
of our algorithm is summarized in Fig. 3. During the initial
placement phase, we group all gates into columns according to
their logical stage and assign their initial locations randomly.
Then, a heuristic approach is employed to generate the clock
distribution. After that, the DP-based placement minimizes the
TVWL by considering both data and clock nets, with a focus
on optimizing vertical minimum length and vertical matching
length. Finally, the barycenter-like reordering stage further
refines the placement result. Detailed explanations of these
steps are provided in the following subsections.

A. Clock Distribution Generation

In our algorithm, a heuristic approach is proposed to generate
the clock distribution. For each node v within a column, we first
assign an index to it by sorting all nodes in that column based
on their yv values. Then, we keep track of the indices of its
data inputs and utilize them as factors to determine the source
of the clock pulse. For a target node v, we track all indices of
u ∈ FI(v). The source of the clock pulse for the target node v
is determined as the node whose index is the average of indices
in FI(v). For instance, in Fig. 2, the data inputs of node g4
are nodes g1 and g2 (FI(g4) = {g1, g2}). The index of g1 is
1, and the index of g2 is 2. Consequently, the clock pulse of
g4 is derived from the node with an index of 1 (computed as
⌊(1 + 2)/2⌋ = 1) in the former stage, which is g1. As for g5,
it has only one data input, resulting in the clock pulse being
sourced from the node with an index of ⌊3/1⌋ = 3, i.e., g3.

B. Fine-grained DP-based Placement

After generating the clock distribution, we want to find a
location for each node with minimum TVWL. However, finding
the locations of nodes individually, without any constraint, can
be a complicated problem. For a node in column Vi, there are at
least |Vi|! possible arrangements by just adjusting their orders.

In a circuit with n logical stages, this becomes
n∏
i

|Vi|!, which

is infeasible for large-scale circuits. Let

lsumv = lvcv + lmc
v +

∑
u∈FI(v)

(lvdu,v + lmd
u,v). (5)

Then TVWL can be written as the sum of lsumv according to
Equation (5). We observe that nodes within a single column
contribute to TVWL independently, implying that the location
of one node does not affect the others within the same column.

y1,|Y1|

y1,2

y1,1

Start

(s)

w(y1,1)

w(y1,2)

w(y1,|V1|)

y2,|Y2|

y2,2

y2,1

yi,|Yi|

yi,j

yi,1

yn,|Yn|

yn,k

yn,1

End

(t)

w(y2,1)

w(t)

w(t)

w(t)

w(y2,|Y2|)

Fig. 4. Trellis diagram for the column-wise placement.

Based on this observation, we can transform the placement
problem into a shortest path problem by introducing a fixed
order assumption. This approach minimizes the sum of lsumv

by identifying the path with the lowest cost on a graph.
Consequently, we propose a DP-based algorithm that en-

ables effective and computationally efficient solution generation
for the RSFQ placement problem. The DP-based placement
algorithm assumes that nodes within a column are ordered
in ascending order based on their yv values. The algorithm
performs DP column by column, starting from the bottom and
moving upwards within each column. When updating the node
locations within a column, it assumes that the locations of nodes
in other columns remain fixed. We will illustrate the execution
of the DP algorithm on the problem.

After sorting the nodes in Vn, they can be represented
as V ′

n = {v1, v2 . . . vp . . . v|Vn|}. When performing DP on
the nodes in column n (vp ∈ V ′

n), each node maintains an
exploration range of [yvp − r, yvp

+ r], where r is a predefined
hyperparameter. Besides, since the order of nodes is fixed, a
node can only be placed in locations that can preserve enough
space for other nodes within the range [0, H]. This can be
expressed as the following constraint for all vp ∈ V ′

n:
p−1∑
i=1

hvi ≤ yvp ≤ H −
|Vn|∑
i=p

hvi . (6)

Then, the set Yp of candidate locations for node vp is given by:

Yp = {yp,mp |yp,mp ∈ [yvp − r, yvp + r] ∩ [

p−1∑
i=1

hvi , H −
|Vn|∑
i=p

hvi]},

(7)

where mp = 1, 2, . . . , |Yp|. Assign yp,mp
to gate vp can ensure

that there is always a feasible space for other gates in the same
column to be placed, with the fixed-order constraint.

The DP-based algorithm generates a weighted directed graph,
denoted as Gk, for each V ′

n, effectively converting the RSFQ
placement problem into a shortest path problem. Shown in
Fig. 4, the graph contains vertices {s, t}∩Y1∩· · ·∩Y|Vn|. The
vertex s connects to each vertex in Y1, while all vertices in Y|Vn|
connect to t. Besides, a vertex in Yp is connected to a vertex in
Yp+1 if and only if yp,mp

+ hp ≤ yp+1,mp+1
which keeps the

fixed order assumption. Each edge connected to yp,mp has a
weight, denoted as w(yp,mp), representing the cost of moving
to it. The value of w(yp,mp

) depends on yp,mp
. For columns

with logical stages greater than 0, w(yp,mp
) = lsump (yp,mp

),
where lsump (yp,mp

) corresponds to lsumv when the location of
vp is yp,mp . For the column with a logical stage of 0, which

only contains PIs, w(yp,mp
) is calculated as

∑
u∈FO(v)

ldv,u, the

sum of all vertical minimum length of its outputs. The edges
connected to t have a weight of w(t) = 0. A path from s to t
with a minimum cost, i.e., the sum of w(yp,mp

), guides us to
find the minimum TVWL for column n. The vertex along the
path represents the location of each node vp to get the minimum
TVWL. Based on the above analysis, the state transition model
of our DP-based algorithm can be formulated as follows:

dp[p][yp,mp
] =

{
min
y

(
dp[p− 1][y] + w(yp,mp

), dp[p][yp,mp
]
)
, p > 1, y + hp−1 < yp,mp

w(yp,mp
), p = 1

,

(8)
where dp array is used to record the partial sums of the cost.
When p = 1, dp[p][y′] stores the value of w(yp,mp

). For
p > 1, dp[p][y′] stores the minimum subsum of w(yp,mp

)
considering the nodes from v1 to vp. So the minimum TVWL of
this column corresponds to the minimal values in dp[|Vk|][∗].
By backtracking the dp array, we can identify the placement
associated with the minimum cost.

C. Barycenter-like Reordering

In the DP-based placement, the relative locations of nodes
remain unchanged. However, it is important to acknowledge
that this fixed order significantly limits the solution space. To
address this challenge, we aim to design a method to find a new
node order across all columns based on the obtained placement
result. The new order can assist in achieving a placement
result with reduced TVWL by DP. Evaluating the quality of
a reordering outcome, specifically concerning TVWL, requires
the completion of the reordering process and subsequent DP
calculations, which can be time-consuming. So, it is more
appropriate to establish a new target that is related to TVWL
and can guide the reordering to minimize the TVWL wisely.
According to Equations (4)–(5), TVWL is constructed with the
minimum vertical minimum length and the vertical matching
length, both of which are determined by the positions of nodes.
This suggests that reordering nodes based on their length and
positions could offer a promising approach. Therefore, we
introduce a barycenter-like reordering algorithm, which enables
the reordering of nodes within columns. The new location yv
for node v can be calculated as: yv =

∑
wu,v∗yu∑
wu,v

, where wu,v

represents a weight related to the connection from node u to
node v. A higher weight indicates that the location yu of node
u has a greater influence on the placement of node v, resulting
in a tendency for node v to be placed closer to yu in the
subsequent update.

A straightforward method to select weight is to use lvdu,v+lmd
u,v

as wu,v for u ∈ FI(V). In this situation, it updates the
location of a gate based on all of its input connections,
with the connection having the longest length exerting the
most significant influence on the new position determination.
However, this approach only captures a portion of the delay
influence for a gate. Practically, it is the delay from the PI to a
gate’s input pins, rather than the delay from the preceding stage,
that accurately defines a gate’s delay. Given this understanding,
we introduce a refined weighting strategy: for any u ∈ FI(v),
we employ the value representing the delay from the PI, passing

TABLE I
COMPARISON RESULTS BETWEEN JPLACE AND THE BASELINE.

Circuits Stages Gates
JPlace / SA

T=100 T=1000
runtime TVWL runtime TVWL

c432 39 1015 37.57% 71.36% 24.89% 72.02%
c499 14 604 21.75% 75.11% 18.07% 73.07%
c880 30 1376 42.93% 62.18% 33.11% 64.77%
c1355 14 635 33.23% 72.96% 21.27% 76.42%
c1908 24 1149 61.64% 62.96% 46.44% 63.09%
c3540 35 2279 24.23% 33.53% 18.75% 34.51%
c5315 31 5503 24.98% 35.21% 18.56% 34.84%
c6288 78 4765 22.39% 82.22% 17.01% 87.46%
c7552 50 7571 21.63% 27.62% 18.61% 28.75%
int2float 18 494 8.09% 64.56% 6.86% 63.31%
sin 171 16516 5.00% 19.36% 4.13% 20.70%
priority 217 17778 16.01% 60.24% 15.56% 60.19%
adder 257 49278 18.29% 28.04% 17.96% 28.34%
multiplier 259 77538 5.28% 46.24% 5.81% 47.07%
max 209 83933 13.13% 23.41% 10.72% 23.26%
Ave. Imp. / / 76.26% 49.00% 81.48% 48.15%

through u and terminating at v, as the weight w(u, v). This
weighting strategy aids in identifying the input that serves as
the critical path, allowing for the TVWL minimization from a
broader, cross-column perspective. Consequently, gate v tends
to be positioned closer to the gate with the greatest delay. By
reducing this delay, other connections would require shorter
vertical matching length to meet the timing constraints.

D. Time Complexity Analysis

Our algorithm’s time complexity can be explained as follows.
In the initial placement step, each node is assigned a location
randomly, which takes O(|V |) time. During clock distribution
generation, each node records its index on its FO(v) with
an extra O(|V |) space during sorting. Thus, finding the clock
source can be done in O(|V | log |V |+ |V |). Next, in the fine-
grained DP-based placement, we introduce a hyperparameter
r. According to Equation (8), the time complexity of this
step can be estimated as O(r2|V |). Notably, setting a large
value for r is unnecessary for achieving good performance.
Following that, the barycenter-like reordering updates node
locations based on their inputs. Since all nodes have at most
three inputs, updating the location of a single node has a
linear time complexity. Additionally, the sorting part of this
phase requires O(|V | log |V |) time. Combining these factors,
the time complexity for one iteration of the algorithm is
O(|V |+ r2|V |+ |V | log |V |). Since r is a small constant (set
to 50 in our experiment), the overall time complexity can be
simplified to O(|V | log |V |). Considering that the algorithm
runs for I iterations (set to 100 in our experiment), the total
time complexity of our algorithm is O(I · |V | log |V |).

V. EXPERIMENTS

JPlace was implemented in Python programming language.
All the experiments were performed on a machine equipped
with an Intel(R) Core(TM) i7-11700 processor running on the
Ubuntu 20.04 LTS in Window Subsystem for Linux (WSL),
with 16 GB of RAM. In our evaluation, we utilized the circuits
from the ISCAS85 and EPFL combinational benchmarks as
our test cases. These circuits have varying numbers of logical

(a) sin (b) max
Fig. 5. Temporal evolution of TVWL for (a) sin and (b) max circuits using
JPlace and the SA-based method with different initial annealing temperatures.

stages and gates, with the largest circuit having up to 209
logical stages and 83933 gates, while previous research finished
placement on circuits that contain hundreds of gates. The sizes
and timing parameters of the gates in the circuits were sourced
from the ColdFlux logic cell library [16].

To evaluate the effectiveness of JPlace, we compared it
against a modified version of Kito’s SA-based method. To
ensure a fair comparison, we made two primary modifications
to Kito’s SA-based method. First, we adjusted the objective
function of Kito’s original method to use TVWL as the metric.
Secondly, we treated two gates within the same column as a pair
and introduced changes to multiple pairs in a single placement
perturbation to reduce the runtime of SA. For the remaining SA
settings, we set the number of iterations to 10, using a cooling
ratio of 0.95, and terminating annealing when the temperature
drops below 0.01. We executed JPlace with I = 100 and
r = 50. The algorithm recorded the best placement result, and
if there was no improvement for five consecutive iterations,
JPlace would terminate automatically.

Fig. 5 illustrates how the TVWL changes for the sin and
max circuits during the execution of JPlace and the SA-based
method. The initial annealing temperatures of the SA-based
methods are set to 100 and 1000, respectively. It is evident that
JPlace demonstrates rapid convergence towards superior results.
Table I presents a comparison between JPlace and the SA-
based method in terms of placement quality and runtime across
various benchmarks. In the table, “Stages” and “Gates” denote
the respective counts of logical stages and gates in each circuit.
The final row presents the average improvement ratio between
JPlace and SA results. On average, JPlace outperforms SA by
49.00% and 48.15% in terms of the TVWL and by 76.26% and
81.48% in the runtime, respectively.

VI. CONCLUSION

This paper introduced JPlace, a clock-aware length-matching
method for RSFQ placement that considers both clock and data
nets during the placement process to minimize the total vertical
wirelength. JPlace comprises two key components: fine-grained
dynamic programming-based placement and barycenter-like re-
ordering. The fine-grained dynamic programming-based place-
ment operates under an order fixed placement, which can
minimize the goal of total vertical wirelength while maintaining

acceptable time complexity. The barycenter-like reordering ad-
justs the order and positions of gates, exploring the search space
for fine-grained dynamic programming-based placement in a
heuristic manner. We evaluated the performance of JPlace on
multiple circuits, using a SA-based method as the baseline. The
experimental results demonstrated that JPlace outperformed SA
on all benchmark circuits, with an average reduction of 49.00%
and 48.15% in total vertical wirelength, while the runtime was
improved by 76.26% and 81.48%, respectively.

ACKNOWLEDGMENTS

This work was supported by National Key Research and
Development Program (Grant No. 2022YFB4501404), the
National Natural Science Foundation of China (Grant No.
62302477), the Strategic Priority Research Program of the
Chinese Academy of Sciences (Grant No. XDA18000000), and
the CAS Project for Youth Innovation Promotion Association.

REFERENCES

[1] K. Likharev and V. Semenov, “RSFQ logic/memory family: a new
josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Trans. Appl. Supercond., vol. 1, no. 1, pp. 3–28, 1991.

[2] Y. Yamanashi, M. Tanaka, A. Akimoto, H. Park, Y. Kamiya, N. Irie,
N. Yoshikawa, A. Fujimaki, H. Terai, and Y. Hashimoto, “Design and
implementation of a pipelined bit-serial SFQ microprocessor, core1β,”
IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 474–477, 2007.

[3] Y. Ando, R. Sato, M. Tanaka, K. Takagi, N. Takagi, and A. Fujimaki,
“Design and demonstration of an 8-bit bit-serial RSFQ microprocessor:
Core e4,” IEEE Trans. Appl. Supercond., vol. 26, no. 5, pp. 1–5, 2016.

[4] R. Sato, Y. Hatanaka, Y. Ando, M. Tanaka, A. Fujimaki, K. Takagi, and
N. Takagi, “High-speed operation of random-access-memory-embedded
microprocessor with minimal instruction set architecture based on rapid
single-flux-quantum logic,” IEEE Trans. Appl. Supercond., vol. 27, no. 4,
pp. 1–5, 2017.

[5] K. Ishida, I. Byun, I. Nagaoka, K. Fukumitsu, M. Tanaka, S. Kawakami,
T. Tanimoto, T. Ono, J. Kim, and K. Inoue, “SuperNPU: An extremely fast
neural processing unit using superconducting logic devices,” in MICRO,
pp. 58–72, 2020.

[6] P. Gonzalez-Guerrero, M. G. Bautista, D. Lyles, and G. Michelogiannakis,
“Temporal and SFQ pulse-streams encoding for area-efficient supercon-
ducting accelerators,” in ASPLOS, p. 963–976, 2022.

[7] R. Fu, J. Huang, H. Wu, X. Ye, D. Fan, and T.-Y. Ho, “JBNN: A hardware
design for binarized neural networks using single-flux-quantum circuits,”
IEEE TC, vol. 71, no. 12, pp. 3203–3214, 2022.

[8] N. Kito, K. Takagi, and N. Takagi, “A fast wire-routing method and an
automatic layout tool for RSFQ digital circuits considering wire-length
matching,” IEEE Trans. Appl. Supercond., vol. 28, no. 4, pp. 1–5, 2018.

[9] J.-T. Yan, “Fixed-order placement of pipelined architecture in rapid
single-flux-quantum circuits,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 30, no. 10, pp. 1519–1532, 2022.

[10] K. Kitamura, T. Kawaguchi, and N. Takagi, “Wire length-matching aware
placement method for rapid single flux quantum logic circuits,” IEEE
Transactions on Applied Superconductivity, vol. 33, no. 5, pp. 1–5, 2023.

[11] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-
85 benchmarks: A case study in reverse engineering,” IEEE Des. Test,
vol. 16, pp. 72–80, jul 1999.

[12] L. Amarù, P.-E. Gaillardon, and G. De Micheli, “The EPFL combinational
benchmark suite,” in IWLS, 2015.

[13] R. Fu, Z.-M. Zhang, G.-M. Tang, J. Huang, X.-C. Ye, D.-R. Fan, and N.-
H. Sun, “Design automation methodology from RTL to gate-level netlist
and schematic for RSFQ logic circuits,” in GLSVLSI, p. 145–150, 2020.

[14] J.-T. Yan, “Tree-based clock distribution of multiple-stage pipelined
architecture in rapid single-flux-quantum circuits,” IEEE TCAD, vol. 41,
no. 4, pp. 1090–1102, 2022.

[15] K. Gaj, E. G. Friedman, and M. J. Feldman, “Timing of multi-gigahertz
rapid single flux quantum digital circuits,” J. VLSI Signal Process. Syst.,
vol. 16, no. 2–3, pp. 247–276, 1997.

[16] L. Schindler and T. Hall, “RSFQ cell library.” https://github.com/
sunmagnetics/RSFQlib. Version: 3.0, Release date: 21 March 2023.

