
An Optimal DFF-Oriented Technology Legalization Algorithm for
Rapid Single-Flux-Quantum Circuits

Minglei Zhou

SKLP, Institute of Computing Technology, CAS

School of Computer Science and Technology,

University of Chinese Academy of Sciences

Beijing, China

zhouminglei24s@ict.ac.cn

Rongliang Fu

Department of Computer Science and Engineering,

The Chinese University of Hong Kong

Hong Kong, China

rlfu@cse.cuhk.edu.hk

Ran Zhang

SKLP, Institute of Computing Technology, CAS

School of Computer Science and Technology,

University of Chinese Academy of Sciences

Beijing, China

zhangran23s@ict.ac.cn

Xiaochun Ye

SKLP, Institute of Computing Technology, CAS

Beijing, China

yexiaochun@ict.ac.cn

Tsung-Yi Ho

Department of Computer Science and Engineering,

The Chinese University of Hong Kong

Hong Kong, China

tyho@cse.cuhk.edu.hk

Junying Huang
∗

SKLP, Institute of Computing Technology, CAS

Beijing, China

huangjunying@ict.ac.cn

Abstract
Superconducting rapid single-flux-quantum (RSFQ) logic has gar-

nered considerable attention as a prospective technology for future

computing systems, thanks to its superior high-speed and low-

power characteristics. However, conventional semiconductor logic

synthesis tools can not guarantee the functional correctness of the

generated RSFQ circuits. RSFQ circuits require DFF and splitter

insertion to satisfy the path balancing requirement and the fanout

limitation, thereby legitimizing the circuit design. Furthermore,

DFFs and splitters inserted in RSFQ circuits introduce delays, oc-

cupy area, and substantially increase energy dissipation. To address

this problem, this paper proposes an optimal DFF-oriented technol-

ogy legalization algorithm. First, an integer linear programming

algorithm is proposed for the logic level assignment to minimize the

number of inserted DFFs. Then a splitter tree is constructed for each

net of the circuit to minimize the timing discrepancies among the

various fanouts. The experimental results on ISCAS’85 and EPFL

benchmarks demonstrate the effectiveness and efficiency of our

proposed algorithm compared with the state-of-the-art, particularly

with significant advantages on large circuits.

CCS Concepts
• Hardware→ Emerging technologies.

Keywords
RSFQ, Superconducting logic circuits, DFF and splitter insertion,

Integer linear programming

ACM Reference Format:
Minglei Zhou, Rongliang Fu, Ran Zhang, Xiaochun Ye, Tsung-Yi

Ho, and Junying Huang. 2025. An Optimal DFF-Oriented Technology

Legalization Algorithm for Rapid Single-Flux-Quantum Circuits . In Great
Lakes Symposium on VLSI 2025 (GLSVLSI ’25), June 30-July 2, 2025, New

∗
Corresponding author: huangjunying@ict.ac.cn

This work is licensed under a Creative Commons Attribution 4.0 International License.

GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1496-2/2025/06

https://doi.org/10.1145/3716368.3735163

Orleans, LA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.

1145/3716368.3735163

1 Introduction
Josephson junction (JJ) based superconducting rapid single-flux-

quantum (RSFQ) technology [19] has become a popular emerging

technology, potentially offering high-performance digital systems

at low power. The Josephson junction exhibits the Josephson effect

at approximately 4 K, demonstrating rapid switching speeds and

low switching energy. Previous research has demonstrated the

potential of RSFQ technology for high-performance operation (tens

of GHz) in large-scale circuits, such as microprocessors [2, 17] and

hardware accelerators formachine learning [8, 15, 16]. However, the

pulse-based logic, different active and passive components, certain

interconnect structures, and tens of gigahertz clock frequencies

present unique challenges during the RSFQ circuit design process.

Among these challenges, two critical issues stand out as particu-

larly demanding: the clock-synchronized data propagation require-

ment and the fanout limitation. First, nearly all RSFQ logic gates

operate in synchronization with the clock to achieve clock-driven

gate-level pipelining. To ensure the correct operation of RSFQ logic

gates, all input signals to a gate must arrive within the same clock

cycle. This necessitates the insertion of Delay flip-flops (DFFs) to

equalize path lengths from primary inputs (PIs) to each gate. Sec-

ond, unlike CMOS gates, most RSFQ logic gates have a limited

fanout of one. Therefore, splitters are required to distribute sig-

nals to multiple destinations. Consequently, DFF and splitter (D/S)

insertion is a critical step in RSFQ circuit design, and their legal

implementation is essential to guarantee the correct functionality

of the RSFQ circuit.

However, DFFs and splitters occupy a significant portion of RSFQ

circuits, seriously affecting the area, delay, and energy consump-

tion of RSFQ circuits. Although numerous studies [9, 10, 14] have

addressed this issue in AQFP circuits, a different superconducting

technology, these methods are not applicable to RSFQ circuits. This

is because splitters in AQFP logic require clocking, whereas those in

RSFQ logic do not, resulting in fundamentally different constraints.

Additionally, Katam et al. [18], and Fu et al. [11] used ABC [4], an

open-source logic synthesis and verification tool, to generate an

intermediate circuit, followed by the insertion of DFFs and split-

ters using a retiming-like approach to satisfy path balancing and

https://orcid.org/0009-0006-4124-1355
https://orcid.org/0000-0003-3744-2083
https://orcid.org/0009-0001-9615-2716
https://orcid.org/0000-0003-4598-1685
https://orcid.org/0000-0001-7348-5625
https://orcid.org/0000-0001-5845-6965
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3716368.3735163
https://doi.org/10.1145/3716368.3735163
https://doi.org/10.1145/3716368.3735163

GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Minglei Zhou, Rongliang Fu, Ran Zhang, Xiaochun Ye, Tsung-Yi Ho, and Junying Huang

fanout constraints. Ghasem et al. [20] proposed a path balancing

technology mapping algorithm, PBMap, for RSFQ circuits, which

can provide an optimal solution of DFF insertion for RSFQ circuits

with a tree-like structure. However, this algorithm is not optimal

for circuits with a general directed acyclic graph (DAG) structure.

Rassul et al. [3] proposed a two-stage SFQ technology mapping

method that supports the T1 cell and uses multi-phase clocking to

meet the timing requirements for the input signals of the T1 cell.

The increased complexity of clock distribution due to multi-phase

clocking makes the physical design of RSFQ circuits more challeng-

ing. Furthermore, in the current RSFQ physical design, the splitter

insertion is typically associated with the optimization during place-

ment [6] and routing [7] stages. So, technology legalization for

RSFQ circuits should focus on DFF insertion.

This paper focuses on minimizing the number of inserted DFFs

while ensuring the correct functionality of RSFQ circuits from a

global circuit optimization perspective. It provides a comprehen-

sive analysis of the operational mechanisms of RSFQ logic and

explains the reasons behind the insertion of DFFs and splitters. To

address this problem, we propose an optimal DFF-oriented tech-

nology legalization algorithm. Specifically, we make the following

contributions:

• We propose an integer linear programming-based algorithm

to minimize the number of inserted DFFs by minimizing the

maximum logic level gap between the source and sinks of

each net.

• We construct a splitter tree for each net in the RSFQ circuit

with the minimum splitters to minimize the timing discrep-

ancies among the various fanouts.

• The proposed algorithm achieves an average reduction of

44.05% in the number of inserted DFFs and 38.41% in the

number of JJs on the ISCAS’85[5] and EPFL[1] benchmarks,

respectively, compared to GLSVLSI’20[11]. Furthermore, it

reduces the number of inserted DFFs by 11.88% and the

circuit depth by 19.01% on average compared to PBMap[20].

2 Background
2.1 Rapid Single-Flux-Quantum Circuits
RSFQ circuits employ JJ as their active device for high-speed digital

signal processing. Information is stored in the form of magnetic flux

quantum and transferred in the form of single-flux-quantum (SFQ)

voltage pulses. The SFQ within the JJ serves as the fundamental

information carrier, similar to the voltage level in traditional CMOS

circuits. The logical states of ‘1‘ and ‘0‘ are represented by the

presence or absence of an SFQ pulse, respectively.

In RSFQ logic, clock pulses are essential for transferring stored

SFQs between adjacent gates. RSFQ gates are clocked and require

the clock signal to trigger the transfer of their stored SFQ pulse to

their output. This inherent sequential nature of RSFQ gates enables

natural gate-level pipelining, leading to significant differences in

clocking methodologies compared to CMOS [12]. To further clarify

the operational principles and design constraints of RSFQ circuits,

we will introduce a representative RSFQ logic gate, D flip-flop (DFF),

and discuss two critical aspects of RSFQ circuit design: the fanout

limitation and the path balancing requirement.

JJ-level schematic of an RSFQ DFFD DFF

DFFdata out

clk

J1 J3

J2

data

clk

out

L3
DC

L2

L1

L4

(a)

clk

data

out

1

1

0

0

(b)

Figure 1. (a) and (b) are the JJ-level and timing schematic
diagrams of the RSFQ DFF, respectively.

JJ-level schematic of an RSFQ splitterS Splitter

S
p
li

tt
er

data
out1

out2

J2J1

J3

L2

L3

L1

I3

I2I1

data

out2

out1

(a)

A

RSFQ

A

CB

CMOS

Splitter

CB

(b)

Figure 2. (a) The JJ-level schematic of SPL2. (b) An instance
of splitter insertion for a 2-fanout net. In CMOS circuits, the
output of A can be directly connected to B and C, but in RSFQ
circuits, an SPL2 must be inserted to connect A to B and C.

2.1.1 RSFQ DFF. RSFQ DFF provides a simple way to demonstrate

the operational mechanism of RSFQ logic. It is mainly designed to

store SFQ pulses and consists of a superconducting ring, as shown

in the JJ-level schematic in Fig. 1(a). The superconducting ring,

labeled as 𝐽1-𝐿3-𝐽3, serves as the storage device for SFQ pulses. It

has two stable states: ‘1’ and ‘0’, representing the presence and

absence of a magnetic flux quantum within the ring, respectively.

When an SFQ voltage pulse arrives at the input port (𝑑𝑎𝑡𝑎), the

current flowing through junction 𝐽1 will approach its critical cur-

rent. This causes 𝐽1 to switch from the superconducting state to

the voltage state, generating an SFQ voltage pulse. This pulse is

then stored as an SFQ within the superconducting loop formed by

𝐽1-𝐿3-𝐽3, setting the loop state to ‘1’. Subsequently, if a clock pulse

arrives while the loop is in the ‘1’ state, the junction 𝐽3 switches,

releasing the stored SFQ, and resetting the loop state to ‘0’. Con-

versely, if the clock pulse arrives while the loop is in the ‘0’ state, the

current flowing through 𝐽3 remains below its critical current, and

no voltage pulse is generated at the output port. Fig. 1(b) illustrates

the timing diagram of DFF operating under concurrent-flow clock-

ing, where the clock and data signals flow in the same direction and

the clock signal precedes the data signal. As a result, when an input

pulse (‘1’) arrives during a clock cycle, an output pulse is produced

in the subsequent clock cycle.

2.1.2 Fanout limitation. Unlike conventional CMOS gates, RSFQ

logic gates typically can drive only a single output due to their

limited output driving capability. Therefore, for a multi-fanout

net in RSFQ circuits, a splitter tree must be constructed to split

the pulse from the net source to multiple sinks. This requires a

An Optimal DFF-Oriented Technology Legalization Algorithm for Rapid Single-Flux-Quantum Circuits GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA

a
G1

G2

b

c
q

w1

clk

clk

(a)

clk

a

b

c

w1

q

1

0

1

(b)

a
G1

G2

b

c
q

w1

clk

clk

w2

clk

DFF

(c)

clk

a

b

c

w1

w2
q

1

0

0

(d)

Figure 3. (a) An instance of path imbalance. (b) The path im-
balance leads to a functional error where the output becomes
1 when a = 0, b = 1, and c = 1. (c) Introducing a DFF at the
second input of the𝐺2 gate. (d) The correct waveform after
introducing the path-balanced DFF.

dedicated JJ-based gate called the splitter, typically SPL2 for two

and SPL3 for three fanouts. Fig. 2(a) depicts the simplified schematic

of SPL2, featuring three JJs, i.e., 𝐽1-𝐽3. At appropriate bias currents

(𝐼1-𝐼3), when an SFQ pulse is generated at the input port (𝑑𝑎𝑡𝑎),

it propagates simultaneously to both output ports (𝑜𝑢𝑡1 and 𝑜𝑢𝑡2).

As illustrated in Fig. 2(b), CMOS circuits allow gate A to connect

directly to gates B and C. Conversely, in a superconducting RSFQ

circuit, an SPL2 is required at the output of gate A to drive the

other two gates. In an RSFQ circuit, it is necessary to insert 𝑁 − 1

splitters for an 𝑁 -fanout net if only SPL2 is used to construct the

fanout tree. Therefore, it is crucial to insert splitters appropriately

to minimize the gate count of RSFQ circuits, especially for circuits

with many multi-fanout nets.

2.1.3 Path balancing. Almost all RSFQ logic gates require a clock

pulse to transfer stored quantum and synchronize gates, allowing

for the natural gate-level pipeline. Consequently, to ensure the

correct logic operation of RSFQ logic gates, all fanin gates of a

given RSFQ gate should have the same logic level, known as the

path balancing constraint. The logic level of a gate is defined as the

maximum number of clocked gates from any PI of the circuit to

this gate. If discrepancies in logic levels exist among the fanins of a

gate, it is necessary to insert DFFs at the outputs of the fanin gates

with lower logic levels to achieve path balancing.

Fig. 3(a) illustrates an instance of path imbalance. In this example,

the 𝐺2 gate’s two input gates (one of which is the PI) have logic

levels of 1 and 0, thereby violating the path balance condition. This

imbalance leads to a functional error where the output becomes

1 when 𝑎 = 0, 𝑏 = 1, and 𝑐 = 1, as shown in Fig. 3(b). Due to the

absence of a path-balanced DFF at input c, during the clock cycle

when the𝐺2 gate performs an XOR operation, an erroneous output

of 1 is generated. However, by introducing a DFF at the second

input of the𝐺2 gate (depicted in Fig. 3(c)), the output changes to 0,

effectively rectifying the circuit’s functionality. The corresponding

waveform is shown in Fig. 3(d).

3 Methodology
3.1 Terminology
An RSFQ circuit can be represented by a network, denoted as

𝑁 (𝑉 , 𝐸), where 𝑉 is the set of nodes, and 𝐸 is the set of nets. The

node set 𝑉 consists of three subsets: 𝑃𝐼 for PIs, 𝑃𝑂 for primary

outputs (POs), and𝐺 for logic gates. Each edge in 𝐸 corresponds to

a net. For an edge 𝑒 ∈ 𝐸, 𝑒𝑠 is its net source, and 𝑒𝑡 is the set of its

net sinks. If edge 𝑒 is a 2-pin net, then |𝑒𝑡 | = 1, otherwise |𝑒𝑡 | > 1.

For a node 𝑣 ∈ 𝑉 , 𝐿[𝑣] denotes its logic level, while FI(𝑣) and FO(𝑣)
represent the sets of its fanin nodes and fanout nodes, respectively.

Particularly, for a node 𝑖 ∈ 𝑃𝐼 , the set of its fanin nodes is empty. For

a node 𝑜 ∈ 𝑃𝑂 , the set of its fanout nodes is also empty. After D/S

insertion, an extended network 𝑁 ′(𝑉 ′, 𝐸 ′) can be obtained, where

𝑉 ′ = 𝑉 ∪ 𝐷 ∪ 𝑆 , with 𝐷 and 𝑆 representing the sets of DFFs and

splitters, respectively. In addition, as shown in Fig. 4(b), all nodes

are organized into multiple columns according to their logic levels.

The logic level for any node 𝑣 ∈ 𝑉 ′
in the 𝑖th column is defined as

𝑖 . Specifically, this can be expressed as 𝑖 = 𝐿(𝑣) = max

𝑢∈FI(𝑣)
𝐿(𝑢) + 1,

where 𝑣 ∈ 𝑉 ′
. This paper assumes that all PIs arrive at the same

clock cycle and that all POs are generated in the same clock cycle.

Therefore, the logic level for each PI is set to 0, while the logic level

for each PO is the maximum logic level 𝑙max.

3.2 Problem Formulation
In RSFQ circuits, the JJ complexity is usually a vital metric, repre-

senting the number of required JJs to design a logic block. However,

to satisfy the path balancing requirement and fanout limitation,

a large number of DFFs and splitters must be inserted in RSFQ

circuits. Therefore, minimizing the total JJ counts caused by D/S

insertion is equivalent to minimizing the total number of inserted

DFFs and splitters. Our objective is to minimize the number of

inserted DFFs while adhering to the design requirements of RSFQ

circuits. Therefore, the D/S insertion problem for RSFQ circuit de-

sign can be formulated as follows:

• Input: A given circuit 𝑁 (𝑉 , 𝐸) and the RSFQ cell library.

• Output: An extended RSFQ circuit 𝑁 ′(𝑉 ′, 𝐸 ′) inserted DFFs

and splitters.

• Constraints:

(1) Fanout limation: ∀𝑖 ∈ 𝐺 , the fanout of 𝑖 is limited to one.

(2) Path balance: ∀𝑣 ∈ 𝑉 ′, 𝑢 ∈ FI(𝑣), 𝐿(𝑣) = 𝐿(𝑢) + 1.

(3) PI alignment: ∀𝑖 ∈ 𝑃𝐼 , 𝐿(𝑖) = 0, which ensures that PIs

arrive at the same clock cycle.

(4) PO alignment: ∀𝑜 ∈ 𝑃𝑂 , 𝐿(𝑜) = max

𝑣∈𝑉 ′
𝐿(𝑣) + 1, which

ensures that POs are generated in the same clock cycle.

Constraints (1) and (2) guarantee the circuit 𝑁 ′
is legal after

DFF and splitter insertion.

• Goal:

min

𝑁 ′
|𝐷 | , (1)

which means minimizing the number of inserted DFFs in the

circuit 𝑁 ′
while guaranteeing the functional correctness of

the original circuit 𝑁 .

GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Minglei Zhou, Rongliang Fu, Ran Zhang, Xiaochun Ye, Tsung-Yi Ho, and Junying Huang

Logic

gate

G0 G1

G2

G3

G4

G5 1

2

3

3

4

Logic

level

gap

(a)

Logic

level

G5

G0

G4

G3

G2

G1

0 1 2 3 4

1 Logic Level Assignment

(b)

Logic

level

DD

G5

G0

G4

G3

G2

G1

0 1 2 3 4

D

2 DFF Insertion

DFF

(c)

G0

G4

S

D

S S

D D G1

G2

G3

G5

0 1 2 3 4

3 Splitter Insertion

Splitter

(d)

Figure 4. An example of the D/S insertion. (a) is the input sub-circuit, where each blue number is the minimum logic level gap
of the corresponding connection. (b) gives a logic level assignment for all gates. (c) inserts DFFs for the connection with the
largest logic level gap between the source and sinks. (d) inserts splitters for other connections.

3.3 ILP-based D/S Insertion Algorithm
Ensuring the correct functionality of RSFQ circuits relies on meet-

ing two crucial constraints: path balancing and fanout limitation.

In cases where these constraints are naturally violated, the circuit

necessitates the insertion of additional DFFs and splitters. How-

ever, it is worth noting that the clock-driven feature of RSFQ DFFs

introduces implications for both the circuit performance and the

clock distribution complexity. Therefore, we propose an optimal

DFF-oriented technology legalization algorithm. The D/S insertion

process is divided into three phases. First, an integer linear program-

ming model is proposed to minimize the maximum logic level gap

between the source and sinks of each net. Next, based on the prede-

fined logic level assignments, DFFs are inserted between source and

sink nodes that exhibit the maximum logic level gap within each

net to ensure path balancing. Finally, splitter trees are constructed

to achieve multi-fanout for all nets. The primary objective of our

algorithm is to minimize the number of inserted DFFs, which also

facilitates circuit depth minimization. Circuit depth is defined as

the PO’s logic level minus 1. A lower circuit depth implies a shorter

amount of time required to accomplish a task.

3.3.1 DFF Insertion.

Lemma 1. Given a net 𝑒 after assigning logic levels, the minimum
number of DFFs that must be inserted to achieve path balancing is
max

𝑒𝑡𝑖 ∈𝑒𝑡

(
𝐿[𝑒𝑡𝑖] − 𝐿[𝑒𝑠] − 1

)
.

Proof. Assume that the number of inserted DFFs in net 𝑒 is

𝑑𝑒 , where 𝑑𝑒 < max

𝑒𝑡𝑖 ∈𝑒𝑡

(
𝐿[𝑒𝑡𝑖] − 𝐿[𝑒𝑠] − 1

)
. So, there must exist a

sink 𝑒𝑡𝑘 such that 𝐿[𝑒𝑡𝑘] − 𝐿[𝑒𝑠] − 1 > 𝑑𝑒 . However, to achieve

path balancing, the number of inserted DFFs must be greater than

or equal to the logic level gap between source 𝑒𝑠 and sink 𝑒𝑡𝑘 .

This contradicts the given condition that 𝐿[𝑒𝑡𝑘] − 𝐿[𝑒𝑠] − 1 > 𝑑𝑒 .

Therefore, the minimum number of DFFs that must be inserted in

net 𝑒 to achieve path balancing is max

𝑒𝑡𝑖 ∈𝑒𝑡

(
𝐿[𝑒𝑡𝑖] − 𝐿[𝑒𝑠] − 1

)
. □

For each net after assigning logic levels, DFFs are inserted only

between the source and the sink that possesses the largest logic

level gap. This strategy aims to minimize the number of inserted

DFFs for the given circuit(Lemma 1). Fig. 4 shows an example

of inserting D/S using our algorithm. As shown in Fig. 4(a), the

circuit features a net where the minimum logic level gap for 𝐺5

is 1, while 𝐺4, 𝐺3, 𝐺2, and 𝐺1 have minimum logic level gaps of 2,

3, 3, and 4, respectively. Assuming that the logic level is assigned

according to the minimum logic level gap of each gate, as shown in

Fig. 4(b), the first step is to insert DFFs at the sink with the largest

logic level gap. Specifically, this involves inserting DFFs on the

connection 𝐺0 → 𝐺1. As shown in Fig. 4(c), after inserting three

DFFs,𝐺1 achieves path balancing. At this point, it is only necessary

to insert splitters between the DFFs; no additional DFFs need to

be inserted to satisfy the path balancing for all gates, as shown in

Fig 4(d). Relevant details about splitter insertion will be elaborated

in Section 3.3.2. So, the minimum number of inserted DFFs for a

net 𝑒 can be calculated by max

𝑒𝑡𝑖 ∈𝑒𝑡

(
𝐿[𝑒𝑡𝑖] − 𝐿[𝑒𝑠] − 1

)
.

Consequently, the quality of the D/S insertion depends on the

logic level assignment. Nevertheless, how to determine an opti-

mal logic level assignment is challenging due to the intricate in-

teractions among nets. To address this problem, we first give the

following mathematical formulation for the logic level assignment:

min

∑︁
𝑒∈𝐸

max

𝑒𝑡𝑖 ∈𝑒𝑡

(
𝐿[𝑒𝑡𝑖] − 𝐿[𝑒𝑠] − 1

)
, (2)

𝑠 .𝑡 . 𝐿[𝑒𝑡𝑖] − 𝐿[𝑒𝑠] − 1 ≥ 0,∀𝑒 ∈ 𝐸,∀𝑒𝑡𝑖 ∈ 𝑒𝑡 (3)

𝐿[𝑝𝑖] = 0,∀𝑝𝑖 ∈ 𝑃𝐼 (4)

𝐿[𝑢] = 𝐿[𝑣],∀𝑢, 𝑣 ∈ 𝑃𝑂, (5)

where the objective function is to minimize the total number of

inserted DFFs. Besides, Equation (3) guarantees that the logic level

assigned to the source of each net must be strictly less than that of

its corresponding sinks. Equations (4)-(5) ensure that all PIs have a

logic level of 0 and that all POs share the same logic level.

Notably, the RSFQ splitter does not require clock driving, so it

does not need to be considered when assigning logic levels. To

simplify the min-max formulation in Equation (2), the variable 𝑑𝑒 is

introduced, which actually represents the number of inserted DFF

required by net 𝑒 and must satisfy the constraint in Equation (7).

So, the aforementioned logic level assignment formulation can be

An Optimal DFF-Oriented Technology Legalization Algorithm for Rapid Single-Flux-Quantum Circuits GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA

equivalently transformed into the following ILP problem.

min

∑︁
𝑒∈𝐸

𝑑𝑒 (6)

𝑠 .𝑡 . 𝐿[𝑒𝑡𝑖] − 𝐿[𝑒𝑠] − 1 ≤ 𝑑𝑒 ,∀𝑒 ∈ 𝐸,∀𝑒𝑡𝑖 ∈ 𝑒𝑡 (7)

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (3) − (5) (8)

After solving this problem using the ILP-based solver, the logic

level of each gate can be determined. Subsequently, DFFs are in-

serted between gates with the maximum logic level gap in each net,

thereby minimizing the number of DFFs inserted.

3.3.2 Splitter Insertion. After assigning logic levels to each logic

gate and inserting DFFs, the primary concern shifts to the inser-

tion of splitters to satisfy the fanout limitation and path balancing

requirement. For a 2-pin net, it is sufficient to insert DFFs without

the need for any splitters. However, for an over-2-pin net, it is nec-

essary to construct a splitter tree composed of splitters to achieve

multi-fanout. As shown in Fig. 5, logic gates are grouped according

to their logic levels. For each group, a splitter tree is constructed

using RSFQ splitters, achieving multi-fanout for all gates.

Fig. 5(a) illustrates a single-branch splitter tree. With each addi-

tional fanout, the depth of the single-branch splitter tree increases

by one. This splitter tree is relatively straightforward to implement

during the placement and routing stages. However, due to the tem-

poral delays introduced by SFQ pulses when passing through a

splitter, there may be significant timing discrepancies between dif-

ferent fanouts of the same output. This situation is detrimental to

meeting the clock-synchronized data propagation of RSFQ circuits.

As shown in Fig. 5(a), all fanouts of 𝐼5 are arranged in height and

split sequentially through splitters. The red numbers above the

logic gate 𝐺1, 𝐺2, 𝐺3 and 𝐺4 indicate the number of splitters that

the output traverses when traveling from 𝐼5 to each correspond-

ing logic gate. To reach 𝐺1 and 𝐺2, the output from 𝐼5 must pass

through four splitters while reaching𝐺4 requires only two splitters.

Fig. 5(b) illustrates an approximate complete binary splitter tree

to achieve multi-fanout. This splitter tree can minimize the timing

discrepancies among the various fanouts. As shown in Fig. 5(b),

the number of splitters traversed by different fanouts differs by no

more than one, thereby mitigating the timing discrepancies among

the various fanouts. Therefore, this paper employs the construction

of a complete binary tree to insert splitters, thereby minimizing the

timing discrepancies among the various fanouts.

4 Experiment
4.1 Experiment Setup
The experiments are executed on Intel Core i7-13650HX 2.60 GHz

CPU with 16 GB memory. The optimal DFF-oriented technology

legalization algorithm is implemented by Python 3.8, and the Gurobi

[13] is used as the ILP solver. The RSFQ cell library is from the open-

source ColdFlux logic cell library for the MIT-LL SFQ process [21].

The JJ count of an SPL3 is evaluated as 1.5 times that of an SPL2[21].

The benchmarks are from ISCAS85[5], EPFL[1] and MCNC[22].

4.2 D/S Insertion Evaluation
We compare our proposed algorithm with the baseline algorithm

from GLSVLSI’20 [11] and PBMap[20]. As the code and cell library

Splitter

Tree

G4

G3

G2

S

S

S

I2

I3

I4

I5

G6

G5 O2

O3

D

4

3

2

PIs POs

I1 G1

S

4

D O1

0 1 2 3

(a)

G3

G2I2

I3

I4

I5

G6

G5 O2

O3

S

2

2

3

G1

S

S

G4

I1

DS

2

D O1

0 1 2 3

Logic

Level

(b)

Figure 5. Two different types of splitter trees. (a) constructs
a single-branch splitter tree, where each red number is the
number of splitters that the output traverses when traveling
from 𝐼5 to each corresponding logic gate. (b) constructs an
approximate complete binary splitter tree.

Table 1. Experimental results on the ISCAS’85 and EPFL
benchmarks

Circuit

GLSVLSI’20[11] Ours

DFF SPL JJ Depth DFF SPL JJ Depth

c432 895 219 7136 21 569 250 4885 21

c499 360 166 3196 10 308 187 2853 10

c880 1164 230 9112 19 749 274 6251 19

c1355 514 162 4270 12 387 184 3403 12

c1908 1371 378 11211 19 790 434 7200 19

c3540 3066 1211 26543 29 1449 1324 15337 29

c5315 5272 1221 42063 21 2994 1378 26274 21

c6288 50199 6151 377974 68 7429 6957 79390 68

c7552 6243 1285 49034 24 3761 1524 31899 24

int2float 283 137 2588 10 128 158 1524 10

priority 2366 549 18611 30 1392 644 11888 30

adder 23125 816 164999 75 14812 934 106926 75

max 43429 3593 318800 59 29865 3907 224166 59

sin 57274 8813 438117 104 11952 9852 121902 104

Average 2.24 0.88 1.88 1 1 1 1 1

of PBMap are not available, the data of PBMap in Table 2 is taken

from [20]. Since the maximum fanout of the splitter in GLSVLSI’20

is 3 and in PBMap it is 2, we maintain consistency in the maximum

fanout of splitters when comparing with the baselines.

Table 1 shows the experimental results of D/S insertion on the

ISCAS’85 and EPFL benchmarks. “DFF” denotes the number of

inserted DFFs; “SPL” denotes the total number of inserted splitters

(SPL2 and SPL3); “JJ” denotes the JJ count of inserted gates; and

“Depth” stands for the circuit depth after D/S insertion. The results

indicate a significant advantage of the proposed algorithm in terms

of the number of inserted DFFs, about a reduction of 44.05% on

average. Although our proposed algorithm leads to more splitters

inserted due to distinct strategies employed in the D/S insertion

process, overall, it achieves an average reduction of 38.41% in the

JJ count compared with GLSVLSI’20. Furthermore, our proposed

algorithm demonstrates significant advantages over GLSVLSI’20

when applied to large circuits. For instance, in the case of the ISCAS

GLSVLSI ’25, June 30-July 2, 2025, New Orleans, LA, USA Minglei Zhou, Rongliang Fu, Ran Zhang, Xiaochun Ye, Tsung-Yi Ho, and Junying Huang

Table 2. Comparison between our algorithm and PBMap[20]

Circuit

PBMap[20]
1

Ours

DFF Depth Time(s) DFF Depth Time(s)

c499 476 13 0.064 308 10 0.335

c880 774 22 0.16 749 19 0.386

c1908 696 20 0.14 790 19 0.418

c3540 1159 31 0.56 1449 29 1.603

c5315 2908 23 1.4 2994 21 1.855

c7552 2429 19 1.04 3761 24 2.218

decoder 8 4 0.012 8 4 0.353

9sym 143 14 0.05 129 12 0.376

int2float 270 16 0.082 128 10 0.299

i9 647 12 0.26 523 10 0.597

cavlc 522 17 0.19 347 12 0.721

priority 9064 124 41.9 1392 30 0.844

sin 13666 182 409.8 11952 104 16.364

Average 1.58 1.44 1 1

’85 benchmark circuit 𝑐7552 and the EPFL benchmark circuit 𝑠𝑖𝑛, our

algorithm achieves substantial improvements in the DFFs inserted

and JJ count compared to the GLSVLSI’20, with average reductions

of 82.17% and 75.59%, respectively.

Table 2 shows the comparison between PBMap and our proposed

ILP-based algorithm. “Time(s)” denotes the runtime in seconds.

Compared to PBMap, our proposed algorithm consistently achieves

circuit designs with smaller depth, averaging a 19.01% decrease.

Our proposed algorithm also reduces the number of inserted DFFs,

achieving an average reduction of 11.88%. In addition, when dealing

with certain large circuits, our proposed algorithm demonstrates a

significant advantage in runtime compared to PBMap. For instance,

for the large circuits 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 and 𝑠𝑖𝑛 from EPFL benchmark, our

algorithm reduces the runtime by 97.99% and 96.01%, respectively.

5 Conclusion
Superconducting RSFQ logic is an up-and-coming solution in the

post-Moore era. Still, current RSFQ-based EDA tools have some

limitations due to the unique characteristics of RSFQ circuits. This

paper proposed an optimal DFF-oriented technology legalization

algorithm for RSFQ circuits, which satisfies the path balancing re-

quirement and fanout limitation with the target of minimizing the

number of inserted DFFs. First, an ILP-based algorithm was pro-

posed to determine the optimal optimization logic level assignment.

For each net after assigning logic levels, DFFs are inserted only be-

tween the source and the sink that possesses the largest logic level

gap. Next, splitter trees were constructed for all nets to minimize

the timing discrepancies among the various fanouts. Experimental

results demonstrated that the proposed algorithm outperformed

state-of-the-art D/S insertion algorithms on benchmark circuits in

terms of the number of inserted DFFs and circuit depth, particularly

on large circuits.

Acknowledgments
This work was supported by the National Natural Science Founda-

tion of China (Grant No.62302477).

References
[1] Luca Gaetano Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli.

2015. The EPFL Combinational Benchmark Suite. In Proc. IWLS.
[2] Yuki Ando, Ryo Sato, Masamitsu Tanaka, Kazuyoshi Takagi, Naofumi Takagi,

and Akira Fujimaki. 2016. Design and Demonstration of an 8-bit Bit-Serial RSFQ

Microprocessor: CORE e4. 26, 5 (2016), 1–5. https://doi.org/10.1109/TASC.2016.

2565609

[3] Rassul Bairamkulov, Mingfei Yu, and Giovanni De Micheli. 2024. Unleashing

the Power of T1-cells in SFQ Arithmetic Circuits. In Proc. DAC. 6 pages. https:

//doi.org/10.1145/3649329.3658267

[4] Robert Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-

Strength Verification Tool. In Proc. CAV. Springer-Verlag, 24–40. https://doi.org/

10.1007/978-3-642-14295-6_5

[5] Franc Brglez. 1985. A neutral netlist of 10 combinatorial benchmark circuits and

a target translator in FORTRAN. In Proc. ISCAS. 663–698.
[6] Siyan Chen, Rongliang Fu, Junying Huang, Zhimin Zhang, Xiaochun Ye, Tsung-Yi

Ho, and Dongrui Fan. 2024. JPlace: A Clock-Aware Length-Matching Placement

for Rapid Single-Flux-Quantum Circuits. In Proc. DATE. 1–6. https://doi.org/10.

23919/DATE58400.2024.10546887

[7] Xinda Chen, Rongliang Fu, Junying Huang, Huawei Cao, Zhimin Zhang, Xi-

aochun Ye, Tsung-Yi Ho, andDongrui Fan. 2023. JRouter: AMulti-Terminal Hierar-

chical Length-Matching Router under Planar Manhattan Routing Model for RSFQ

Circuits. In Proc. GLSVLSI. 515–520. https://doi.org/10.1145/3583781.3590267

[8] Rongliang Fu, Junying Huang, Haibin Wu, Xiaochun Ye, Dongrui Fan, and Tsung-

Yi Ho. 2022. JBNN: A Hardware Design for Binarized Neural Networks Using

Single-Flux-Quantum Circuits. IEEE Trans. Comput. 71, 12 (2022), 3203–3214.

https://doi.org/10.1109/TC.2022.3215085

[9] Rongliang Fu, Mengmeng Wang, Yirong Kan, Olivia Chen, Nobuyuki Yoshikawa,

Bei Yu, and Tsung-Yi Ho. 2024. Buffer and Splitter Insertion for Adiabatic

Quantum-Flux-Parametron Circuits. IEEE TCAD (2024), 1–14. https://doi.org/10.

1109/TCAD.2024.3461573

[10] Rongliang Fu, Mengmeng Wang, Yirong Kan, Nobuyuki Yoshikawa, Tsung-Yi

Ho, and Olivia Chen. 2023. A Global Optimization Algorithm for Buffer and

Splitter Insertion in Adiabatic Quantum-Flux-Parametron Circuits. In Proceedings
of the 28th Asia and South Pacific Design Automation Conference. 769–774. https:

//doi.org/10.1145/3566097.3567936

[11] Rongliang Fu, Zhi-Min Zhang, et al. 2020. Design Automation Methodology from

RTL to Gate-Level Netlist and Schematic for RSFQ Logic Circuits. In Proc. GLSVLSI.
145–150. https://doi.org/10.1145/3386263.3406898

[12] Kris Gaj, Eby G Friedman, and Marc J Feldman. 1997. Timing of multi-gigahertz

rapid single flux quantum digital circuits. Journal of VLSI signal processing systems
for signal, image and video technology 16, 2 (1997), 247–276.

[13] Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual. https:

//www.gurobi.com

[14] Chao-Yuan Huang, Yi-Chen Chang, et al. 2021. An Optimal Algorithm for

Splitter and Buffer Insertion in Adiabatic Quantum-Flux-Parametron Circuits. In

Proc. ICCAD. 1–8. https://doi.org/10.1109/ICCAD51958.2021.9643456

[15] Koki Ishida, Ilkwon Byun, Ikki Nagaoka, Kosuke Fukumitsu, Masamitsu Tanaka,

Satoshi Kawakami, Teruo Tanimoto, Takatsugu Ono, Jangwoo Kim, and Koji

Inoue. 2020. SuperNPU: An Extremely Fast Neural Processing Unit Using Su-

perconducting Logic Devices. In Proc. MICRO. 58–72. https://doi.org/10.1109/

MICRO50266.2020.00018

[16] Mustafa Altay Karamuftuoglu, Beyza Zeynep Ucpinar, Arash Fayyazi, Sasan

Razmkhah, Mehdi Kamal, and Massoud Pedram. 2025. Scalable superconductor

neuron with ternary synaptic connections for ultra-fast SNN hardware. Supercon-
ductor Science and Technology 38, 2 (2025), 025014. https://doi.org/10.1088/1361-

6668/adaaa9

[17] Ryota Kashima, Ikki Nagaoka, Masamitsu Tanaka, Taro Yamashita, and Akira

Fujimaki. 2021. 64-GHz Datapath Demonstration for Bit-Parallel SFQ Mi-

croprocessors Based on a Gate-Level-Pipeline Structure. 31, 5 (2021), 1–6.

https://doi.org/10.1109/TASC.2021.3061353

[18] Naveen Katam, Alireza Shafaei, and Massoud Pedram. 2017. Design of Complex

Rapid Single-Flux-Quantum Cells with Application to Logic Synthesis. In Inter-
national Superconductive Electronics Conference. 1–3. https://doi.org/10.1109/

ISEC.2017.8314236

[19] Konstantin K Likharev and Vasilii K Semenov. 1991. RSFQ logic/memory family:

A new Josephson-junction technology for sub-terahertz-clock-frequency digital

systems. 1, 1 (1991), 3–28.

[20] Ghasem Pasandi and Massoud Pedram. 2019. PBMap: A Path Balancing Technol-

ogy Mapping Algorithm for Single Flux Quantum Logic Circuits. 29, 4 (2019),

1–14. https://doi.org/10.1109/TASC.2018.2880343

[21] L. Schindler and T. Hall. 2023. RSFQ cell library. https://github.com/sunmagnetics/

RSFQlib. Version: 3.0, Release date: 21 March 2023.

[22] S. Y. Yang. 1991. Logic Synthesis and Optimization Benchmarks User Guide: Version
3.0. Technical Report. MCNC Technical Report.

https://doi.org/10.1109/TASC.2016.2565609
https://doi.org/10.1109/TASC.2016.2565609
https://doi.org/10.1145/3649329.3658267
https://doi.org/10.1145/3649329.3658267
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.23919/DATE58400.2024.10546887
https://doi.org/10.23919/DATE58400.2024.10546887
https://doi.org/10.1145/3583781.3590267
https://doi.org/10.1109/TC.2022.3215085
https://doi.org/10.1109/TCAD.2024.3461573
https://doi.org/10.1109/TCAD.2024.3461573
https://doi.org/10.1145/3566097.3567936
https://doi.org/10.1145/3566097.3567936
https://doi.org/10.1145/3386263.3406898
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1109/ICCAD51958.2021.9643456
https://doi.org/10.1109/MICRO50266.2020.00018
https://doi.org/10.1109/MICRO50266.2020.00018
https://doi.org/10.1088/1361-6668/adaaa9
https://doi.org/10.1088/1361-6668/adaaa9
https://doi.org/10.1109/TASC.2021.3061353
https://doi.org/10.1109/ISEC.2017.8314236
https://doi.org/10.1109/ISEC.2017.8314236
https://doi.org/10.1109/TASC.2018.2880343
https://github.com/sunmagnetics/RSFQlib
https://github.com/sunmagnetics/RSFQlib

	Abstract
	1 Introduction
	2 Background
	2.1 Rapid Single-Flux-Quantum Circuits

	3 Methodology
	3.1 Terminology
	3.2 Problem Formulation
	3.3 ILP-based D/S Insertion Algorithm

	4 Experiment
	4.1 Experiment Setup
	4.2 D/S Insertion Evaluation

	5 Conclusion
	Acknowledgments
	References

