
JBSA: A Bit-Serial Accelerator for Deep Neural
Networks Using Superconducting SFQ Logic
Yang Su

School of Information Science and
Technology, ShanghaiTech

University
Shanghai, China

Sheng Li
School of Information Science and

Technology, ShanghaiTech
University

Shanghai, China

Huilong Jiang
State Key Lab of Processors,
Institute of Computing

Technology, CAS
Beijing, China

Haofei Yin
School of Information Science and

Technology, ShanghaiTech
University

Shanghai, China

Rongliang Fu
Department of Computer Science
and Engineering, The Chinese

University of Hong Kong
Hong Kong, China

Junying Huang∗
State Key Lab of Processors,
Institute of Computing

Technology, CAS
Beijing, China

Xiaochun Ye
State Key Lab of Processors,
Institute of Computing

Technology, CAS
Beijing, China

Zhimin Zhang
State Key Lab of Processors,
Institute of Computing

Technology, CAS
Beijing, China

Jie Ren
State Key Laboratory of
Functional Materials for
Informatics, SIMIT, CAS

Shanghai, China

Xiaoping Gao
State Key Laboratory of
Functional Materials for
Informatics, SIMIT, CAS

Shanghai, China

Tsung-Yi Ho
Department of Computer Science
and Engineering, The Chinese

University of Hong Kong
Hong Kong, China

Dongrui Fan
State Key Lab of Processors,
Institute of Computing

Technology, CAS
Beijing, China

Abstract
The potential of superconducting single flux quantum (SFQ)
devices in accelerating deep neural networks (DNNs) has gar-
nered significant attention due to their ultra-fast and low-
power switching capabilities. However, existing SFQ-based
DNN accelerators face limitations in scaling up to larger-scale
instances due to the stringent area constraints and complex
architectures. Additionally, another challenge in SFQ-based
DNN acceleration lies in bridging the gap between the ultra-
high computing speed offered by SFQ technology and the rel-
atively low memory bandwidth. To address these challenges,
we propose JBSA, an SFQ-based bit-serial accelerator for DNN
inference acceleration. JBSA leverages bit-serial computing
to alleviate area constraints and reduce bandwidth require-
ments. A bit-serial processing element is designed to imple-
ment multiply-accumulate operations using SFQ logic cells.
Furthermore, we introduce a novel work distribution model
that incorporates a data partitioning scheme and a correspond-
ing scheduling strategy to enhance the overall efficiency of the
accelerator. Experimental results show that JBSA surpasses the
state-of-the-art SFQ-based DNN accelerator, achieving an 11%
performance improvement, a 2.3× power efficiency improve-
ment, and a 56% Josephson junction count reduction. Com-
pared to CMOS-based bit-serial DNN accelerators, JBSA also
∗Corresponding author: huangjunying@ict.ac.cn.

This work is licensed under a Creative Commons Attribution 4.0 International
License.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/2025/06
https://doi.org/10.1145/3721145.3729517

demonstrates outstanding performance and superior power
efficiency.

CCS Concepts
•Hardware→ Emerging architectures; Superconducting
circuits; • Computer systems organization → Systolic
arrays.

Keywords
Superconducting logic, single flux quantum, cryogenic com-
puting, hardware accelerator, bit-serial architecture

ACM Reference Format:
Yang Su, Sheng Li, Huilong Jiang, Haofei Yin, Rongliang Fu, Junying
Huang, Xiaochun Ye, Zhimin Zhang, Jie Ren, Xiaoping Gao, Tsung-
Yi Ho, and Dongrui Fan. 2025. JBSA: A Bit-Serial Accelerator for
Deep Neural Networks Using Superconducting SFQ Logic. In 2025
International Conference on Supercomputing (ICS ’25), June 8–11, 2025,
Salt Lake City, UT, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3721145.3729517

1 Introduction
Deep neural networks (DNNs) are state-of-the-art technology
in a wide range of artificial intelligence (AI) tasks, including
object recognition and speech recognition. To achieve high
performance and energy efficiency, significant research efforts
have been devoted to exploring hardware acceleration meth-
ods for DNN [3, 22]. However, the majority of these designs
rely on complementary metal-oxide-semiconductor (CMOS)
technology, which poses performance limitations as Moore’s
Law gradually breaks down. To address this challenge, in-
novative technologies such as quantum computing [24, 29],
neuromorphic computing [30, 47], approximate computing

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3729517
https://doi.org/10.1145/3721145.3729517
https://doi.org/10.1145/3721145.3729517

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Su et al.

[3, 8, 10, 37], and stochastic computing [7, 31, 42, 43] have
emerged, offering potential solutions.
Among these innovative candidates, the Josephson junc-

tion (JJ)-based superconducting single flux quantum (SFQ)
logic family is a highly promising solution, which offers ultra-
fast switching speeds (in the tens of GHz range) and sig-
nificantly lower energy consumption (∼ 10−19 𝐽 per switch)
[23, 26]. These high potentials have sparked growing inter-
est in the research of superconducting NN accelerators in
recent years, covering attempts to port existing CMOS-based
accelerators [11, 18, 49], superconducting technology with
less traditional computing paradigms [7, 14, 39, 40], and su-
perconducting neuromorphic computing [5, 9, 35, 46].
While the JJ-based superconducting circuits can provide

significant power and performance benefits, the development
of SFQ DNN accelerators faces three fundamental constraints
that motivate our architectural innovation. (1) Manufacturing-
driven area constraints. Current SFQ fabrication technology re-
mains at 250nm CMOS equivalent nodes [45], imposing severe
integration density limitations. (2) Clocking-induced feedback
loop challenges. The SFQ flow clocking mechanism creates
critical path dependencies in feedback loops (Section 2.1.3),
significantly reducing circuit operating frequencies. (3) Com-
putation and memory bandwidth gap. The disparity between
high SFQ logic computation speeds and memory bandwidth
limits the effective performance achievable by SFQ circuits.
Therefore, to address these design challenges, it is necessary
to propose innovative architectures that minimize area over-
head while enhancing performance and power efficiency in
SFQ-based DNN accelerators.
Bit-serial computing architecture seems to be a promising

solution due to its low area overhead, enhanced computa-
tional efficiency, and ability to reduce on-chip storage capacity
(Section 4.1) compared to bit-parallel SFQ designs. However,
the bit-serial scheme for SFQ logic still needs to address two
problems: (1) eliminating feedback loops within processing
elements (PEs) and (2) developing an efficient work distribu-
tion model for bit-serial computation. Bit-serial schemes often
employ the output stationary (OS) dataflow, which typically
involves feedback loops consisting of registers and bit-parallel
adders. These loops significantly degrade the frequency of
PEs within the flow clocking scheme. Furthermore, directly
applying the bit-parallel work distribution model to bit-serial
computation would result in extremely low computational
and storage efficiency (Section 3.4). Therefore, to improve PE
and on-chip buffer utilization, an efficient work distribution
model for SFQ-based bit-serial computation is necessary.

In this paper, we propose JBSA, a bit-serial SFQ-based DNN
accelerator. To create an efficient DNN accelerator using SFQ
logic, we first implemented area-efficientMultiply-Accumulate
(MAC) operations using bitwise AND operations, counting,

IB

Josephson
junction

L1

J1
I

J2

L2

IB
superconductor

insulator

× ×
× ×

0:Flux n =

Figure 1. Superconducting ring with Josephson junctions and its equiv-
alent circuit.

and shifting, resulting in a reduced JJ overhead for the bit-
serial PE. Our 16-bit configuration achieved a 59% reduction
in JJ count compared to the bit-parallel design. Secondly, the
bit-serial architecture eliminates feedback loops within the OS
dataflow, significantly enhancing performance. Moreover, the
OS dataflow reduces on-chip buffer usage by achieving high
data reuse efficiency with minimal data volume, decreasing
JJ count of buffers to 1/6 of that in the bit-parallel weight
stationary (WS) dataflow (Section 5.4). Furthermore, leverag-
ing the lower effective precision of data in bit-serial MACs
reduces off-chip memory bandwidth requirements, bridging
the gap between computing speed and memory bandwidth.
Experimental results indicate that the off-chip memory band-
width requirement of the bit-serial design is only 35% of that
in SuperNPU [18] (Section 5.2).
To evaluate JBSA’s performance, power efficiency, and JJ

overhead, we compare it with three DNN accelerators: (1) Su-
perNPU [18], (2) Loom [36], a state-of-the-art CMOS-based
bit-serial DNN accelerator operating at room temperature
(Loom@300K), and (3) its cryogenic version operating at 77 K
(CryoLoom@77K). Our workload comprises six DNN models:
AlexNet, GoogLeNet, NiN, VGG19, VGGM, and VGGS. The
results show that JBSA outperforms SuperNPU with an 11%
improvement in performance and 2.3× enhancement in power
efficiency, while reducing the JJ count by 56%. Compared with
Loom@300K (CryoLoom@77K), JBSA achieves a speedup of
316× (144×). Considering the 400× cooling cost, the energy-
efficient rapid single flux quantum (ERSFQ)-based JBSA ex-
hibits 1.2× (2.7×) higher power efficiency than Loom@300K
(CryoLoom@77K). However, assuming no cooling cost, the
power efficiency of ERSFQ-based JBSA significantly surpasses
that of CMOS-based designs by 491× (101×) for Loom@300K
(CryoLoom@77K), respectively.

In summary, our work makes the following contributions:
• To the best of our knowledge, this is the first design of an
SFQ-based bit-serial DNN accelerator architecture that
achieves exceptional performance and power efficiency.

• An SFQ-based bit-serial PE is proposed, which elimi-
nates feedback loops within the OS dataflow and en-
ables high-speed processing of MAC operations. The
Bit-serial architecture assisted by OS dataflow remark-
ably reduces the area of the on-chip buffer.

JBSA: A Bit-Serial Accelerator for Deep Neural Networks Using Superconducting SFQ Logic ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

SplitterToggle Flip-Flop with

asynchronous output and

destructive read-out (T1)

T1T

RD

Q

SUM

T1T

RD

Q

SUM

Two clocks and

two outputs DFF

(D2FF)

D2FFD

CLK1 Q1

CLK2
Q2

D2FFD

CLK1 Q1

CLK2
Q2

D2FFD

CLK1 Q1

CLK2
Q2

0 1

D

CLK1/Q1

CLK2/Q2

CLK1

CLK2

0 1

D

CLK1/Q1

CLK2/Q2

CLK1

CLK2

Confluence buffer

(CB)

0A/C B/C0A/C B/C

AND

AND

A

B

CLK

CAND

A

B

CLK

C

00

10 01

11

CLK

A B

CLK

CLK/C

B A

CLK

00

10 01

11

CLK

A B

CLK

CLK/C

B A

CLK

Data Flip-Flop

(DFF)

D

CLK

QDFFD

CLK

QDFF

0 1CLK

D

CLK/Q

0 1CLK

D

CLK/Q

0 1rd

T

T/Q

RD/

SUM
0 1rd

T

T/Q

RD/

SUM

Cell

Symbol

State

Machine

diagram

0
A/B,C

0
A/B,C

A
B

C
A

B

C

A

B
C

A

B
C

Figure 2. Symbols and state machine diagrams of fundamental SFQ gates: DFF, AND, D2FF, T1, splitter, and confluence buffer.

• A novel work distribution model, including a data par-
titioning scheme, a data scheduling strategy, and data
dispatchers, has been designed.

• We thoroughly evaluated the performance, energy effi-
ciency, and resource consumption of JBSA, comparing
it with advanced SFQ-based and CMOS-based acceler-
ators across multiple DNN architectures, revealing the
significant advantages of JBSA.

2 Background
2.1 SFQ logic and its characteristics
The elementary circuit element of SFQ logic is a supercon-
ductor ring, as shown in Fig. 1. It can store and transfer the
SFQ voltage pulse by using the superconducting device, JJ,
which has a superconductor-insulator-superconductor struc-
ture. The magnetic flux in the superconductor loop is quan-
tized as Φ = 𝑛 · Φ0 where Φ0 = ℎ/2𝑒 ≈ 2.07 × 10−15 Wb and
𝑛 is an integer. As shown on the right side of Fig. 1, when
the current of J2 exceeds the critical value in a short time due
to bias current and external source, J2 will produce a voltage
pulse (SFQ pulse). In the context of SFQ circuits, the presence
or absence of an SFQ pulse between two adjacent clock pulses
represents a logic ‘1’ or ‘0’, respectively. It is the voltage pulse
driving characteristics of SFQ circuits that enable the realiza-
tion of JJ switching with extremely low latency (∼ 10−12 s)
and low energy consumption (∼ 10−19 J) [23, 26].

2.1.1 Gate-level pipeline. In contrast to CMOS circuits, most
SFQ logic gates need to be synchronized with the clock, re-
quiring a clock pulse to transfer the stored SFQ to neighboring
gates. In other words, almost every SFQ logic gate possesses
latch functionality, enabling gate-level pipelining. Fig. 2 de-
scribes the symbols and state machine diagrams of SFQ gates
used in this work.

2.1.2 Shift-register-based on-chip memory. While SFQ logic
gates can be used to implement random access memory, the
complex control logic required results in significant hardware
overhead and consumes a large number of JJs, which limits the
scalability of storage capacity [49]. Additionally, alternative
SFQ storage technologies, such as vortex transition memory,

DFFi DFFj

1

2

3

4

Base point

CLKi

CLKj

INj

skewij

holdj setupj

Tclk

�data

(a)

DFFi DFFj

1

2

3

4

Base point

skewij

CLKi

CLKj

INi

Tclk

�data

holdi setupi

(b)
Figure 3. Typical SFQ clocking schemes: (a) concurrent-flow clocking,
and (b) counter-flow clocking modified from [12].

Josephson-CMOS SRAM, magnetic memory, and supercon-
ducting nanowire memory, are either not mature enough or
have strict manufacturing technology prerequisites. Thus, em-
ploying shift-register-based memory for SFQ circuits emerges
as a more convenient approach.

2.1.3 Flow clocking. Due to the extremely high operating fre-
quencies of SFQ circuits and the ubiquitous requirement for
clock signal driving in most gates, SFQ’s timing methodology
diverges significantly from CMOS circuits. Two representa-
tive clocking schemes of SFQ circuits are concurrent-flow
clocking and counter-flow clocking [12]. The feedback loop
within flow clocking schemes affects the frequency of SFQ cir-
cuits. In the absence of a feedback loop, concurrent-flow clock-
ing is recommended, where the clock pulse travels alongside
the data to hide propagation delays (Fig. 3(a)). However, this
clocking is not suitable when a feedback loop exists. In such
cases, the preferable approach is to utilize counter-flow clock-
ing (Fig. 3(b)), effectively concealing the data feedback delay.
Therefore, for optimal performance, we employ concurrent-
flow clocking for the PE and counter-flow clocking for the
shift-register-based memory.

2.2 Bit-serial multiply-accumulate operation
for signed numbers

The bit-serial MAC operation involves three steps: 1) perform-
ing bitwise AND operations to obtain 1-bit partial products for

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Su et al.

a3 a2 a1 a0

b3 b2 b1 b0

a2b0 a1b0 a0b0

a2b1 a1b1 a0b1

a2b2 a1b2 a0b2

a3b3 positive

a3b2 a3b1 a3b0

a2b3 a1b3 a0b3 negative

c3 c2 c1 c0

d3 d2 d1 d0

c2d0 c1d0 c0d0

c2d1 c1d1 c0d1

c2d2 c1d2 c0d2

c3d3 positive

c3d2 c3d1 c3d0

c2d3 c1d3 c0d3 negative

Figure 4. Example of bit-serial MAC operation: 𝐴 · 𝐵 +𝐶 · 𝐷 , where 𝐴,
𝐵,𝐶 , and 𝐷 are 4-bit signed numbers with 𝑎3, 𝑏3, 𝑐3, and 𝑑3 as sign bits.

each bit position, 2) accumulating the partial products at the
same bit position to obtain a partial sum (psum), and 3) shifting
the psums from different bit positions based on their binary
coefficients and accumulating them to obtain the final MAC
result. For example, consider the MAC operation of𝐴 ·𝐵+𝐶 ·𝐷 ,
where 𝐴, 𝐵, 𝐶 , and 𝐷 are 4-bit signed numbers, resulting in a
16-bit partial product as illustrated in Fig. 4. These partial prod-
ucts can be divided into positive and negative components,
based on the principles of binary multiplication [4]. The posi-
tive partial products include bitwise AND operations between
two sign bits, such as 𝑎3𝑏3 and 𝑐3𝑑3, as well as between two
value bits, such as 𝑎0𝑏0 and 𝑐0𝑑0. The negative partial product
is formed by the AND result of one sign bit and one value bit,
such as 𝑎3𝑏2 and 𝑐3𝑑2. We can traverse the bit positions in a
specific order, as suggested in [41], which involves shifting
left by one position or maintaining the current position. This
traversal order helps reduce the hardware resource overhead
of shifters. For instance, the accumulation starts with 𝑎3𝑏3 and
𝑐3𝑑3 at the highest bit position, followed by two left-shift op-
erations, and then the accumulation of 𝑎2𝑏2 and 𝑐2𝑑2. Notably,
shifts and accumulations of positive and negative psums need
to be performed separately. Finally, the positive psum is added
to the 2’s complement of the negative psum to obtain the final
MAC result.

3 Motivation
In this section, we present the motivation behind the SFQ-
based bit-serial DNN accelerator design. We first evaluate the
performance, the JJ overhead, and the ifmap buffer utilization
of the SFQ-based bit-parallel DNN accelerator, SuperNPU, un-
der memory bandwidth constraints. To model SuperNPU, we
develop a simulator based on SCALE-Sim [32], a cycle-accurate
simulator targeting specifically designed systolic-array-based
DNN accelerators. Moreover, we establish a Baseline SFQ-
based bit-serial DNN design as described in Section 3.4. The
design was evaluated using six different network models with
varying topological structures, computational intensities, and
off-chip memory bandwidth requirements.

3.1 Actual performance of SuperNPU
In the current landscape of SFQ-based bit-parallel DNN ac-
celerators, the Von Neumann memory wall [44] poses a sig-
nificant challenge. Despite assuming a memory bandwidth

� �(��&
�##�����& ��� ����

���� ����
��

���
���
���
	��

��

��
%�

#%
!

�"
��

��
#%

!
�

�*
��

�&#
�$

��
�� ��%�#%!�"��

�
�
	
�
�
��

�
�!

#%
)�

&#
��

#!
$'

&�
�

�&
�#

��!#%)�&#��#!$'&��%�&�#

Figure 5. SuperNPU’s performance (normalized to its peak perfor-
mance) and the ratio of memory access time to computation time.

of 300 GB/s, equivalent to TPUv2 [2], the memory access
times of SuperNPU are still 3× longer than the computation
time on average, as depicted in Fig. 5. This discrepancy even
reaches up to 8.6× for GoogLeNet. The large gap between the
high computing speed of tens of GHz and the limited memory
bandwidth significantly reduces the actual performance when
inferring a large batch of images, amounting to only 15% of
the peak performance, as shown in Fig. 5. This limitation is
primarily attributed to the relatively low memory bandwidth,
which imposes constraints on the achievable performance.
Notably, GoogLeNet exhibits the poorest performance due to
the most pronounced discrepancy between its computation
time and memory access time.

3.2 Area overhead of SuperNPU
SuperNPU adopts theWS dataflow to eliminate feedback loops
in PEs. To enhance the overall throughput, the roofline model
suggests that increasing computational intensity, i.e., the num-
ber of MACs executed with one weight mapped onto the PE,
is crucial [18]. In SuperNPU, this is achieved by efficiently
processing a large batch of images concurrently for inference,
reducing off-chip memory access by strategically expanding
on-chip buffer capacity to accommodate ifmap data from mul-
tiple images simultaneously. However, this expansion results
in a substantial overhead of JJ count being devoted to buffers
instead of MACs. Specifically, the on-chip buffer requires 81%
of the total JJs, while the PE array accounts for only 17%, as
depicted in Fig. 6. The primary factor stems from the require-
ment that a single weight mapping encompasses feature map
pixels spanning nearly the entire channel, thereby demanding
a substantial volume of data to attain high data reuse efficiency.
This is particularly evident in batch-based inference scenar-
ios. This represents a major limitation in SFQ-based DNN
designs that rely on the WS dataflow. In this paper, we adopt
the OS dataflow commonly used in bit-serial architectures.
By addressing the limitations of this dataflow, we improve its
practicality and unlock its potential for advancing SFQ-based
DNN accelerator designs.

3.3 Ifmap buffer underutilization of
SuperNPU

The considerable capacity of SuperNPU’s ifmap buffer results
in a notable underutilization of resources. Experimental results

JBSA: A Bit-Serial Accelerator for Deep Neural Networks Using Superconducting SFQ Logic ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

�� ��� ��� ��� ��� ����
�����
	�����

�
����

��

���

���

Figure 6. Breakdown of SuperNPU’s JJ count: distribution among PEs,
buffers, and other circuits.

��
&�
�$

�
 ��

��
�$ ���

��
��
�

��
��

��
��

��

��

���

���

���

��
�
�!

��
%�
��
"��

$��
�'
�$
�
�

�����

��
��

������

�	�
�� �
��	� ������

�����

�����

����

���
��

����
�����

�%!�"��� ��#�����

Figure 7. Ifmap buffer utilization of SuperNPU and Baseline.

show that the ifmap buffer utilization ratio is only 12.7% when
inferring a large batch of images, as shown in Fig. 7. This
is because the capacity of the ifmap buffer depends on the
data volume of the largest DNN layer, while most layers are
significantly smaller than this layer.

3.4 Baseline SFQ-based bit-serial DNN design
A straightforward approach to implementing a superconduct-
ing bit-serial DNN accelerator is to draw inspiration from
the architecture of CMOS-based bit-serial DNN accelerators
and implement it using SFQ logic since extensive research on
CMOS-based bit-serial DNN accelerators exists. Thus, we first
architect an SFQ-based bit-serial DNN accelerator by adopting
the OS dataflow, implementing Loom’s bit-serial PE using SFQ
logic together with SuperNPU’s systolic on-chip network, and
employing shift-register-based on-chip memory. The bit-serial
PE derived from Loom includes a feedback loop consisting
of a 32-bit bit-parallel adder for the accumulation of psums,
leading to a significant degradation in the PE’s operational
frequency. Consequently, this inherent drawback considerably
compromises the performance of Baseline.

In the Baseline design, we adopt SuperNPU’s work distribu-
tion model which each shift register is exclusively allocated
to store the ifmap data for a given channel, subsequently pro-
viding this data to 4 rows of PEs. As a result, only 4 rows of
PEs are mapped with the same image’s output feature map
(ofmap) data. Considering an ofmap size of 56×56, a total of
784 mapping rounds is required to complete the computation.
Due to the sequential memory access of the shift registers,
each mapping operation compels the complete readout of all
ifmap data from the buffer. This also implies that the com-
putation time is directly proportional to the product of the
ifmap and ofmap sizes. This undoubtedly leads to extremely
low efficiency since a convolution operation only requires a
small amount of ifmap data, and the majority of ifmap data

���!��
�

�����
���� ��� ����

���� ����

��

��

��

�
��
��
 �
�

�
��

�
��
���
� �����

����� ���	� �����

����� �����

Figure 8. Baseline’s effectual computation.

fed into the PEs is ineffectual. Experimental results show that
the effectual MACs are only 0.76% as shown in Fig. 8.
Furthermore, in bit-serial computing, the reduction in the

precision of the ifmap and weight corresponds to a decrease
in data volume. Correspondingly, similar to SuperNPU, the
oversized ifmap buffer of Baseline also suffers from underuti-
lization. Fig. 7 shows that the ifmap buffer utilization ratio is
only 6.8% when inferring a large batch of images, even lower
than that of SuperNPU.

3.5 Research challenges and goals
As the Baseline design described above suffers from various
performance and efficiency constraints, we are in dire need of
convincing architectures to effectively circumvent the bottle-
necks.

Removing feedback loops in PEs. PEswith theOS dataflow
typically include feedback loops consisting of registers and
bit-parallel adders, which significantly degrade the PEs’ oper-
ating frequency within the concurrent-flow clocking scheme.
Architects must remove the feedback loop inherent in the PE
to harness the high frequency of concurrent-flow clocking,
thereby enhancing the overall performance of the design.
Absence of a work distribution model for bit-serial

computation using SFQ logic. As mentioned above, directly
applying the work distribution model of SuperNPU to bit-
serial computation would result in a low effective computation
ratio. Therefore, to improve the utilization of the PE and on-
chip buffer, an efficient work distribution model for SFQ-based
bit-serial computation should be designed.
This paper proposes JBSA to resolve these challenges. We

first implement a concise bit-serial PE that performs MAC
operations using SFQ logic cells (Section 4.2). Next, we pro-
pose a novel work distribution model to match the bit-serial
computation (Section 4.3). Finally, the effectiveness of JBSA is
evaluated (Section 5).

4 JBSA Architecture
In this section, we first introduce the overall architecture of
JBSA, including an overview of its main components. Next, we
provide a detailed explanation of the SFQ-based bit-serial PE
design and the work distribution model, aiming to address the
challenges mentioned above. Finally, we conduct a comprehen-
sive analysis of various architectural configuration parameters
to illustrate the design decisions made for JBSA.

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Su et al.

Weight buffer

Ifmap buffer

PE PE PE

PE PE PE

PE PE PE 3
2

-b
it

 t
o

 4
-b

it

Ofmap buffer

252 � 256 PE array

4
-b

it
 t

o
 3

2
-b

it

D
is

p
at

ch
er

s

O
ff

-c
h

ip
 M

em
o

ry

M
U

X

D
E

M
U

X

MUX

DEMUX

+

+

+

Bit-slice adders

Figure 9. The overview of JBSA.

4.1 Overall architecture
Fig. 9 shows the overview of JBSA. The major components of
JBSA can be summarized as follows.

252×256 systolic PE array: The PE array adopts a systolic
on-chip network structure, as it offers the highest operating
frequency and minimal area overhead under the flow clock-
ing of SFQ technology [18]. Additionally, the systolic array
facilitates the timing alignment of data arrivals between the
sequential buffer and PEs. The PE array scale is 252×256.

Three on-chip buffers: The on-chip buffer is divided into
three areas for ifmaps, ofmaps, and weight filters, respectively.
The capacity of the ifmap buffer is 2.2MB, which is 10× smaller
than that of superNPU. This is because JBSA employs the OS
dataflow, in which each ofmap pixel is assigned to a given
PE and only a portion of ofmap pixels is allowed to be com-
puted concurrently due to the limited size of the PE array. As
a result, the ifmap buffer needs to retain only the ifmap data
required for computing the current ofmap pixels, which is fur-
ther constrained by the size of weight filters. This eliminates
the necessity to concurrently store all ifmap data on-chip,
thereby leading to a reduction in ifmap buffer capacity re-
quirements and a minimization of ifmap buffer area overhead.
The capacity of the ofmap buffer is 252 KB, which is only 1%
of that of SuperNPU, yet it is sufficient to store all positive
psums or final ofmap data mapped to PEs. The weight buffer
has a capacity of 4.5 MB, double that of the ifmap buffer. This
allows it to store as many weight filters as possible, reducing
the need for off-chip memory access, since weights are highly
reusable in convolution operations.

To minimize data movement overhead and underutilization
in the shift register, JBSA partitions a larger buffer into mul-
tiple smaller chunks, similar to SuperNPU [18]. The ifmap
buffer is partitioned into 128 chunks and connected by the
multiplexer (MUX) and demultiplexer (DEMUX) trees, with
different chunks storing ifmap data of different bit positions
from different images. The DEMUX tree selects a chunk to
store data, while the MUX tree activates an appropriate chunk

to provide data for computation. Each chunk consists of 252
shift registers corresponding to 252 PE rows. The length of
each ifmap shift register is 36. The weight buffer is also parti-
tioned into 128 chunks, with different chunks storing weights
of different bit positions. Each chunk consists of 256 shift
registers corresponding to 256 weight filters fed into 256 PE
columns. The length of each weight shift register is 72. The
ofmap buffer consists of 504 shift registers, each of which
stores positive psums or final ofmap data for half a PE row.
504 4-bit bit-slice adders: To accumulate the psums pro-

duced by 8 Shift counters (as described in Section 4.2) in each
PE, as well as to add the positive and negative psums, we as-
sign an adder to each half row of PEs, resulting in a total of 504
adders. To mitigate area overhead, we employ a 4-bit bit-slice
carry look-ahead adder structure, based on a 4-bit bit-slice
arithmetic logic unit [38], which enables the operation of a
32-bit addition every 8 cycles. To support the 4-bit bit-slice
adders, JBSA integrates circuits for data conversion between
32-bit and 4-bit formats.

Additionally, JBSA includes dispatchers to send ifmap data
to the appropriate PE rows at the precise time. To achieve
a high operating frequency, JBSA employs concurrent-flow
clocking for the PE array and dispatchers, while employing
counter-flow clocking for on-chip buffers and bit-slice adders.

4.2 SFQ-based bit-serial PE design
We design a feedback-free bit-serial PE with the OS dataflow,
as shown in Fig. 10. During each clock cycle, the PE performs
bitwise AND operations between the 𝑖-th bits of 16 consecutive
ifmap pixels and the 𝑗-th bits of 16 consecutive weight pixels
along the channel dimension, resulting in 16 partial products at
the specific bit position. Accumulating these single-bit partial
products is achieved through counting operations.
As described in Section 2.2, the psums from different bit

positions necessitate either shifting left or maintaining the
current position before accumulation. To facilitate these oper-
ations, we introduce an SFQ-based module called Shift counter,
as shown in Fig. 10. The Shift counter comprises a series of T1
gates, collectively forming a 32-bit counter. Each T1 gate func-
tions as a modulo-two counter, generating an asynchronous
output pulse as a carry signal into the higher T1 gate for every
two input pulses, as illustrated in Fig. 2. Upon completion of
counting the AND results of all pixels for a particular bit posi-
tion, the psum remains in the counter if the binary coefficient
of its bit position is equal to that of the next bit position (e.g.
𝑎1𝑏2 and 𝑎2𝑏1 in Fig. 4). Otherwise, a read signal is triggered,
causing the psum to be destructively read from the counter
and stored in a set of D2FFs. In the next clock cycle, a shift
signal is activated to left-shift the psum by one position and
transfer it back to the counter. If the psum needs to be shifted
by two positions (e.g., 𝑎3𝑏3 to 𝑎2𝑏2 in Fig. 4), an additional set

JBSA: A Bit-Serial Accelerator for Deep Neural Networks Using Superconducting SFQ Logic ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

Shift counterShift counter

read shift

PE

1
done sample

32

32-DFF

… a16/i a0/i

… a17/i a1/i

DFFDFFDFFDFFDFFDFFDFFDFFDFFDFFDFFDFFDFFDFFDFFDFF
DFFDFFDFFDFF

…
w16/j

w0/j
…

w1/j

w31/j

w15/j

1

… a31/i a15/i

1

1

1 1

read shift done

Shift counterShift counter

sample

32

DFFDFFDFFDFFDFFDFFDFFDFFDFFDFFDFFDFFDFFDFFDFFDFF
DFFDFFDFFDFF

32-DFF

in

in

w17/j

…

Shift counter

shift

DFFDFF

psum0

DFFDFF

…

read

in

done

sample

D2FFD2FF

T1
sum
T1

sum

DFFDFF

D2FFD2FF

T1
sum
T1

sum

DFFDFF

D2FFD2FF

T1
sum
T1

sum

D2FFD2FF

T1
sum
T1

sum

…

…

…

psum1 psum2 psum31

Figure 10. The proposed SFQ-based 16-bit bit-serial PE with OS
dataflow, where the Shift counter circuit is designed for partial prod-
ucts accumulation.

‘11’ ‘1010’ ‘1110’ ‘10’

‘0001 1111’

Figure 11. Simulation result of the Shift counter.

of read and shift signals are required. This process ensures
that the counter value is reset to the updated psum, enabling
the counting of partial products for the subsequent bit posi-
tion. We adhere to the traversal order of bit positions 𝑖 and
𝑗 as outlined in Section 2.2. Once the counting of positive or
negative psums concludes, the read and done signals store the
psum in a register composed of 32 DFFs.

A 16-bit PE comprises 8 Shift counters. The pulse sequences
from two AND gates are processed through a CB gate and
then input into each Shift counter. The sample signal transfers
the psums from the 8 Shift counters to a bit-slice adder for
accumulation. To verify the functionality of the Shift counter,
we first create its layout using Cadence Virtuoso, extract the
netlist, and simulate it using Synopsys VCS. For example, when
using the proposed PE to execute the unsignedMAC 111×011+

..
.

256

..
...

. ..
.

..
.256

Input Feature Map Output Feature MapWeight Filters

7

7

3
2

1

Ifmap tile Ofmap subtile7

7

Figure 12. Data partitioning and scheduling of the convolutional layer.

��� ��� ��� ����� �
��
 �����
�

���
��

��
���

��
��
��
�
��
��

��
��
�
��
�!
��
���

�
��
��

��
� ���� ����

����
���� ��	

����

Figure 13. JBSA’s performance with various spatial sizes of the ofmap
tile, normalized to SuperNPU.

101×010, after passing through the AND and CB gates, the top
Shift counter receives the input sequence 111010111010 at its
𝑖𝑛 port, as illustrated in Fig. 11. The 𝑑𝑜𝑛𝑒 signal is asserted at
the 11th clock cycle, resulting in the correct psum of 00011111.

4.3 Work distribution model design
4.3.1 Data partitioning scheme. We employ a data partition-
ing scheme for ifmaps and ofmaps as shown in Fig. 12. For any
given convolutional layer, we first partition the ofmap along
the spatial dimension. Each segment is designated as a tile,
with a specific spatial size. Selecting an appropriate tile size
is crucial, as a small tile size can lead to redundant off-chip
memory access, while a large tile size would cause excessive
ineffectual computation. Moreover, given the prevalent use
of 224×224 images as inputs in DNNs, it is observed that the
majority of feature map sizes are multiples of 7. Consequently,
adopting a tile size that is also a multiple of 7 can achieve
evenly partitioned feature maps. We evaluate the impact of
different tile sizes on performance, including options that are
powers of 2 and multiples of 7, as shown in Fig. 13. In this
work, we select the performance-optimal 7×7 tile size. Each
tile is further partitioned into multiple portions, called sub-
tiles, along the channel dimension. Each subtile includes 256
channels corresponding to the width of the PE array.
Simultaneously, we partition the ifmap along the spatial

dimension into tiles. The size of each ifmap tile depends on
the volume of ifmap data required to compute a single ofmap
tile, which is determined by the spatial size of the ofmap tile,
the convolutional kernel’s size, and the stride. For example,
with a 3×3 kernel and a stride of 1, the spatial size of the ifmap
tile would be 9×9, spanning all channels.

The ifmap buffer chunk is divided into 36 buffer tiles, each
formed by 7 buffer rows (shift registers). Storage configura-
tions vary by kernel type. For 1×1 kernel, each buffer tile

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Su et al.

stores a single ifmap tile row, and each shift register holds
all channels per spatial position within the row. For larger
kernels, each buffer tile stores an entire ifmap tile, and each
shift register holds all channels per row. A buffer tile does not
need to store the entire ifmap tile data simultaneously.

Correspondingly, we partition the PE array along the height
dimension, with a set of 7 rows of PEs forming a PE tile, re-
sulting in a total of 36 PE tiles. Each PE tile is tasked with
computing one ofmap tile and receives data corresponding
to the ifmap tile. Consequently, JBSA can compute 36 ofmap
tiles concurrently.

4.3.2 Data scheduling strategy. In our approach, the pixels of
a row in an ofmap subtile are concurrently mapped onto 7 PEs
of the corresponding PE tile. The ifmap buffer tile only stores
the necessary data for computation. Once the computation is
done, the same row from the subsequent subtile of the same
ofmap tile is mapped onto the PE tile. Since the ifmap data
required for both mappings is identical, this avoids extra off-
chip memory access.
Once the computation of the same row from different sub-

tiles of the same ofmap tile is finalized, the PE tile proceeds to
compute the succeeding row of the ofmap tile. Due to the data
reuse property of the convolutional layer, the ifmap data re-
quired for computing different rows of the ofmap tile partially
overlaps. In this scenario, the ifmap buffer tile only needs to
load the distinct portion of ifmap data, thereby avoiding extra
off-chipmemory access. Those outdated ifmap data, whichwill
not be utilized in subsequent computations, can be replaced.
The computation sequence of the ofmap is as follows: Ini-

tially, compute ofmap pixels of the first row from different
subtiles of an ofmap tile (Fig. 12 1). Then, compute the second
row from different subtiles of the same ofmap tile (Fig. 12 2),
and continue in this manner until all 7 rows of this ofmap tile
have been computed. Thereafter, transition to the next ofmap
tile (Fig. 12 3).

4.3.3 Dispatcher. The Dispatcher serves two functions: tim-
ing alignment and data dispatch. Each dispatcher is tasked
with dispatching data from an ifmap buffer tile to the corre-
sponding PE tile. Therefore, there are 36 Dispatchers in total,
each corresponding to one of the 36 PE tiles. Fig. 14 illustrates
the structure of the Dispatcher and provides an example of a
3×3 convolution with a stride of 1. To compute 7 pixels of the
first row of an ofmap subtile, the first three rows of the ifmap
tile are stored in the first three shift registers of the buffer tile
(Fig. 14 1).

Timing alignment: Firstly, each shift register is connected
with at least 6 cascaded DFFs to regulate the timing of data
arrival. The number of cascaded DFFs for each shift register
increases by 7 gradually across different Dispatchers, since
weights require 7 cycles to propagate down to the succeeding
PE tile. Additionally, someDFFs should be bypassed depending

PE tileDispatcher

w1'

w

5

w

4 w

8

w

7

i

1'

i

9

··

·

··

·

i

1'

i

9

··

·

··

·

i2' i3' i9'··

·

···

i11 i18···i10

i2 i3 i9···i1

i12

i19i20 i21 i27

i1'

w3w2w1

w6w5w4

w9w8w7

w2' w3'

O1 O2 O3 O4 O5 O6 O7

M

U

X
i1'

i9 i1···

i10' i18 i10···

i19' i27 i19···

D D D D D D

D D D D D D

D D D D D D

D D D D D D

···

···

···

M
U

X

0

0

0

0

00i3i4i5i12

000000

i1i2i3i10i11i12

Ifmap buffer tile

w1'

w9

w3

w2

w1

0i2i3i4i11i12
M

U

X

M

U

X

M

U

X

3

Ifmap Weight Ofmap

S

O1

O2

O3

O7

2
1

4

7th shift register

···

Figure 14. Dispatcher with a working example.

w5w4

w8w7

w3w2w1

w8w7w6

w11 w12 w13

w4

w7

0w5w4

0w10w9

0w14 w15

w5w4

w8w7

w18w17w16

w23w22w21

0 00

w4

w7

0w20w19

0

0 0 0

w25w24

w5w4

w8w7

w3w2w1

w8w7w6

w11 w12 w13

w4

w5w4

w8w7

w18w17w16

w23w22w21

0 0

w4

w7

0w20w19

0w25w24

0 0 0

0w5w4

0w10w9

0w14 w15

0

(a)

w5w4

w8w7

w3w2w1

w8w7w6

w11 w12 w13

w4

w5w4

w8w7

w18w17w16

w23w22w21

0 0

w4

w7

0w20w19

0w25w24

0 0 0

0w5w4

0w10w9

0w14 w15

0

w5w4

w8w7

w5w3w1

w15w13w11

w21 w23 w25

w4

w7

0w4w2

0w14w12

0w22 w24

w5w4

w8w7

w10w8w6

w20w18w16

0 00

w4

w7

0w9w7

0w19w17

0 0 0

(b)
Figure 15. The partition of a 5 × 5 convolutional kernel using (a) stride
= 1 and (b) stride = 2, respectively.

on the size of the convolutional kernel. For example, in a 3×3
convolution, the ifmap data of the first rowmust arrive 3 cycles
prior to the second row and 6 cycles prior to the third row at
the PEs. Therefore, the first row’s 6 DFFs should be bypassed,
and the second row’s 3 DFFs should be skipped (Fig. 14 2).
Data dispatch: After passing through the cascaded DFFs,

data of each shift register is sent to 7 rows of PEs through
splitter trees. Each row of PEs is equipped with an 8:1 MUX
that selects the required data from the 7 shift registers or 0
(Fig. 14 3). The selection signal depends on the convolutional
kernel size, stride, and row index of the ofmap pixels mapped
onto the PE tile, following a regular pattern. For example, in
a 3×3 convolution, the first 3 pixels of the ifmap data in the
convolutional window are selected first, succeeded by the next
3 pixels of the second row, then the next 3 pixels of the third
row, and back to the first row’s next 3 pixels, repeating this
pattern until the computation is complete. Due to the systolic
nature of the PE array, the selection signal originates from the
top of the PE array and propagates downward (Fig. 14 4).
The Dispatcher supports both 1×1 and 3×3 convolutional

kernels. Larger convolutional kernels can be partitioned into
multiple 3×3 convolutional kernels. For example, a 5×5 kernel
can be padded with an additional row and an extra column of

JBSA: A Bit-Serial Accelerator for Deep Neural Networks Using Superconducting SFQ Logic ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

Table 1. Diverse architectural configurations investigated for SFQ-based bit-serial DNN accelerators.

Configuration JBSA Config1 Config2 Config3 Config4 Config5 Config6 Config7 Config8 Config9 Config10

PE array height 252 252 504 504 126 252 252 252 252 252 252
PE array width 256 64 512 128 512 256 256 256 256 256 256

Number of 4-bit adders 504 504 2016 504 504 504 504 504 504 504 504
Ifmap buffer size 2.2 MB 2.2 MB 4.4 MB 2.2 MB 2.2 MB 1.1 MB 4.4 MB 2.2 MB 2.2 MB 2.2 MB 2.2 MB

Ifmap buffer partition 128 128 128 64 256 64 256 128 128 64 256
Weight buffer size 4.5 MB 4.5 MB 4.5 MB 4.5 MB 4.5 MB 4.5 MB 4.5 MB 2.25 MB 9 MB 4.5 MB 4.5 MB

Weight buffer partition 128 512 64 256 64 128 128 64 256 64 256

��
��

�!
 ��
��

�!
 ��
��

�!
 ��
��

�!
 ��
��

�!
 ��
�	

�!
 ��
�

�!
 ��
��

�!
 ��
��

�!
 ��
�

�!
 ��
���

���

���

��

��

���

��	

���

���

���

���

��
#�
!#
�
�
��
��
 �

��
!&

�#
��
���
��
�
�'

��
!#
�
��
�(
��
�$!
��
%"

�#
�
��

�

��#�!#�� �� �!&�#�������� �'

���

���

���

��

���

���

���

���

��

��
��
!%
 $
���

!#
�
��
�(
��
�$!
��
%"

�#
�
��

�

����!% $

Figure 16. Performance, power efficiency and JJ count comparison of
different architectural configurations for SFQ-based bit-serial DNN
accelerators.

zeros, and subsequently partitioned into four 3×3 kernels as
shown in Fig. 15. The number of pixels in a single spatial row
of an ifmap tile is 9 for a 3×3 kernel, which aligns with the
pixel count of the kernel as shown in Fig. 14. Consequently,
this alignment significantly reduces ineffective computations
and bubble insertions for filling the pipeline. This elucidates
one of the reasons behind the performance-optimality of the
7×7 ofmap tile size.

4.4 Design parameter selection
We conduct a comprehensive exploration of the design space
of the SFQ-based bit-serial DNN accelerator architecture to
elucidate the rationale behind the selection of architecture
parameters in JBSA. Specifically, four types of parameters are
analyzed, including computational resource quantity, PE array
shape, buffer size, and buffer partition degree. By varying these
parameters, we create 11 distinct architectural configurations,
as summarized in TABLE 1. We evaluate the performance,
power efficiency, and JJ count of these configurations (Fig. 16).
Initially, we investigate the impact of different computa-

tional resource quantities by comparing JBSA, Config1, and
Config2. Theoretically, a larger PE array size contributes to
improved performance, albeit with increased JJ consumption.
To this end, we start with Config1, which possesses a PE array
size similar to that of SuperNPU, and proceed to enlarge the

PE array size by four times to attain JBSA, resulting in a sig-
nificant 2.4× performance enhancement with only a modest
87% increase in JJ count. In contrast, Config2, with four times
the computational resources of JBSA, yields only a 14% per-
formance improvement, while exhibiting a JJ count 3× that
of JBSA and a power efficiency of merely 37% compared to
JBSA. This observation indicates that the gains in performance
diminish as the PE array size becomes excessively large.

Next, we delve into the influence of various PE array shapes.
Despite possessing identical computational resource quanti-
ties and buffer capacities, JBSA outperforms both Config3
and Config4 in terms of performance and power efficiency,
highlighting the importance of the specific PE array shape.

Subsequently, we analyze the effect of different ifmap buffer
sizes by comparing JBSA, Config5, and Config6. Despite Con-
fig6’s ifmap buffer size being twice that of JBSA, it fails to
demonstrate performance improvement. This is because JBSA’s
ifmap buffer capacity adequately stores all the required ifmap
data for computing concurrently mapped ofmap pixels within
the PE array, thereby eliminating the need for additional
off-chip memory access. Consequently, increasing the buffer
capacity would merely escalate JJ consumption and reduce
power efficiency. Contrarily, Config5, equipped with an ifmap
buffer capacity of only 1.1 MB, faces buffer capacity limita-
tions during the execution of certain DNN layers, leading to a
3% performance reduction compared to JBSA. Nevertheless,
Config5 exhibits 7% fewer JJ counts and 4% higher power effi-
ciency than JBSA. Considering performance and scalability,
we opt for a 2.2 MB ifmap buffer size for JBSA.

Similarly, we explore the impact of different weight buffer
sizes by comparing JBSA, Config7, and Config8. Notably, Con-
fig7, with half the weight buffer size of JBSA, experiences
a substantial 38% performance decline. The reduction is at-
tributed to the insufficiency of weight buffer capacity, which
results in frequent off-chip memory access due to the high
reusability of weights in convolutions. Conversely, JBSA’s
weight buffer effectively stores all weight filters, making the
larger weight buffer in Config8 practically unbeneficial.

Moreover, the shift register lengths within the buffers in the
aforementioned configurations remain consistent, resulting in
equivalent data movement overheads. Lastly, we investigate

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Su et al.

Table 2. Hardware specifications for the proposed JBSA and compara-
tive accelerators.

SuperNPU Baseline JBSA Loom@300K CryoLoom@77K

Dataflow WS OS OS OS OS
PE array height 256 256 252 16 16
PE array width 64 256 256 128 128
PE bit width 16-bit 16-bit 16-bit 16-bit 16-bit

Ifmap buffer size 24 MB 24 MB 2.2 MB 1 MB 1 MB
Weight buffer size 128 KB 4.5 MB 4.5 MB 2 MB 2 MB
Ofmap buffer size 24 MB 252 KB 252 KB 8 KB 8 KB
Frequency (GHz) 23.3 23.3 23.3 1 2.2

Peak perf. (TMAC/s) 382 \ 94 0.13 0.28
RSFQ-based power w.o.c. 1108 W \ 545 W \ \

the influence of different shift register lengths, correspond-
ing to varying buffer partition degrees. A comparative analy-
sis involving JBSA, Config9, and Config10 reveals that finer
partitioning leads to shorter shift register lengths, thereby
contributing to enhanced performance. However, Config10’s
performance improvement is restricted, with only a marginal
2% advantage over JBSA. Ultimately, JBSA attains the highest
power efficiency, surpassing Config10 by 9%.

5 Evaluation
This section evaluates JBSA with three DNN accelerators, Su-
perNPU, Loom, and the cryogenic-CMOS-based implementa-
tion of Loom. The evaluation methodology is first described,
then JBSA is evaluated on performance, power efficiency, and
JJ overhead.

5.1 Evaluation methodology
In this work, we simulate JBSA using the SIMIT fabrication
process [13]. We use Cadence Virtuoso to generate the lay-
out of JBSA and extract the netlist from the layout, which
is simulated using Synopsys VCS. Finally, JBSA achieves a
maximum operating frequency of 23.3 GHz, bounded by on-
chip buffers with feedback loops. The bit width of PE is set
to 16 bits. A comparative analysis is performed on the per-
formance and power efficiency of JBSA against three distinct
DNN accelerator implementations, including:

• SuperNPU. Due to the unavailability of the AIST 1.0
µm fabrication process technology used by SuperNPU,
we utilize the SIMIT fabrication process to implement
SuperNPU, ensuring a fair comparison. The bit width
of PE in SuperNPU is set to 16 bits. The maximum oper-
ating frequency of the implemented SuperNPU is also
23.3 GHz.

• Loom@300K. Loom is implemented by standard inte-
grated circuit design tools with the 45 nm TSMC CMOS
process. The maximum operating frequency reported
by the Synopsys Design Compiler (DC) is 1 GHz.

• CryoLoom@77K. Research has shown that CMOS de-
signs operating at cryogenic temperatures (e.g., 77 K)
can enhance both performance and power efficiency,

Table 3. Setup of six DNN models cited from [36].

Network Data Precisions of Convolutional Layers Batch SizeIfmap / Per Layer Weight
AlexNet 9-8-5-5-7 11 30

GoogLeNet 10-8-10-9-8-10-9-8-9-10-7 11 30
NiN 8-8-8-9-7-8-8-9-9-8-8-8 11 30

VGG19 12-12-12-11-12-10-11-11-13-12-13-13-13-13-13-13 12 7
VGGM 7-7-7-8-7 12 30
VGGS 7-8-9-7-9 12 30

primarily due to reductions in leakage power and wire
resistance at cryogenic temperatures [6]. To implement
the CryoLoom design running at 77 K, we utilize an
open-source 45 nm low-temperature library [17] to syn-
thesize it. To show the potential of cryogenic computing,
we apply voltage scaling to CryoLoom, reducing𝑉𝑑𝑑 and
𝑉𝑡ℎ to 0.75 V and 0.25 V, respectively, as suggested in [6].
The reported maximum frequency by DC is 2.2 GHz.

The hardware specifications of the accelerators above are
summarized in TABLE 2, where “w.o.c.” denotes “without cool-
ing cost”. To model these accelerators, we develop a simulator
based on SCALE-Sim [32]. Across all designs, the off-chip
memory bandwidth is set to 300 GB/s, equivalent to the HBM
value used by SuperNPU [18]. To calculate the JJ overhead
and power consumption of JBSA and SuperNPU, we utilize
the data provided for each SFQ gate in [33]1. The cooling cost
at 4 K and 77 K is assumed to be 400× [15] and 9.65× [20]
of the design’s power consumption, respectively. We choose
six DNN models, namely AlexNet, GoogLeNet, NiN, VGG19,
VGGM, and VGGS, as our workloads. Using the lower effec-
tual precision attributes inherent in bit-serial computation, we
employ the profile-derived expected precision of ifmaps for
each convolutional layer and a shared weight precision across
all convolutional layers, as described in [36]. This approach is
applied to bit-serial-based designs, namely JBSA, Loom@300K,
and CryoLoom@77K. For bit-parallel SuperNPU, a uniform
data precision of 16 bits is employed for all convolutional
layers. To evaluate the performance of the four designs, we
conduct batch-based inferences. The precision levels and batch
sizes used in the evaluation are summarized in TABLE 3.

5.2 Performance evaluation
The speedup of JBSA is evaluated using the normalized through-
put (TMAC/s) relative to Loom@300K. As depicted in Fig. 17,
JBSA consistently outperforms Loom@300K (CryoLoom@77K)
across all DNN models, achieving speedups of 316× (144×)
on average and 810× (362×) in VGGS. This is mainly due to
the high-frequency characteristics of SFQ logic and a signifi-
cantly larger PE array of JBSA. Fig. 17 also demonstrates that
JBSA exhibits a performance improvement of 11% compared
to SuperNPU. This enhancement attributes to three factors.

1The JJ counts of T1 and D2FF are from [28] and [48], respectively, while their
static and dynamic powers are calculated using the method in [27].

JBSA: A Bit-Serial Accelerator for Deep Neural Networks Using Superconducting SFQ Logic ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

���
���
���
���
	�� �&#�$���

����
�""
����
$("�""
���

���'��
%
�""��

���% ��� ����
	

���� ����
�

�

�

�

��
$�
"$

�!
��

��
"$

��
�)
��
�%"
��
""

��
��
�

Figure 17. Normalized performance comparison of JBSA, SuperNPU,
Loom@300K, and CryoLoom@77K.

� �*��'
�##�����' ��� �����

���� ����
���
���
	��

��
���

����

��
��

�'
(�

 ��
#!

$(
'�

'�#
" �����'(� ��#!$('�'�#"

���
���
���
���
��

���
���

�
#&

!
�

�,
��

��
�!

#&
+

�
"�

)
��

'�
��

�%
(�

&�
!

�"
'

��!#&+���"�)��'�

Figure 18. JBSA’s effectual computation and off-chip memory band-
width requirement (normalized to SuperNPU).

Table 4. Power efficiency normalized to Loom@300K.

RSFQ-based ERSFQ-based RSFQ-based ERSFQ-based Loom CryoLoom
JBSA JBSA SuperNPU SuperNPU @300K @77K

w.o.c. 33 491 14.56 215 1 4.87
w.c. 0.08 1.23 0.04 0.54 1 0.46

Firstly, architectural optimizations in JBSA increase the effec-
tualMACoperations to an average of 85.3%, as shown in Fig. 18.
This percentage is 112× higher than the Baseline described
in Section 3.4. Secondly, the precision reduction of bit-serial
technology leads to a lower off-chip memory bandwidth re-
quirement, which is only 35% of what SuperNPU requires, as
shown in Fig. 18. Additionally, the larger PE array in JBSA con-
tributes to its improved performance. In terms of maximum
speedup, JBSA achieves a 1.6× improvement over SuperNPU
in VGGM, primarily due to the lower effective precision of
VGGM. For other DNN models, JBSA’s performance generally
remains on par with that of SuperNPU.

5.3 Power efficiency evaluation
We evaluated JBSA’s power efficiency using two SFQ device
technologies, rapid SFQ (RSFQ) and ERSFQ. These two tech-
nologies differ in terms of power consumption characteristics.
In RSFQ logic, static power dominates the total power con-
sumption, while ERSFQ has zero static power and dynamic
power is assumed to be twice that of RSFQ [18]. The power
efficiency for JBSA, SuperNPU, and the CMOS-based designs
is shown in TABLE 4, where “w.c.” denotes “with cooling cost”.
JBSA outperforms SuperNPU in power efficiency, with an av-
erage improvement of 2.3× (2.3×), and up to 3.3× (3.4×) in
VGGM with RSFQ (ERSFQ) technology. This enhancement is
attributed to the smaller on-chip buffer capacity of JBSA and
its significantly higher utilization ratio of the ifmap buffer, as

��$��
"
�����

���" ��� ����
�

���� ����
��
���
���
	��
���
����

��
�
�
��
#�
��
!

�
"��
�%
�"
��
�

�	���� �
���� ������

������ �	����
�
����

Figure 19. JBSA’s ifmap buffer utilization.

	�
�	�
		�

��	� �������-) *���
���������

�((&�����
�*0(�((&����

�% /� ,
�(("� �

 , �$� ����
 ���� ����
�
�
�
�

�
(*

&
�%
$1
 �

��
(.

 *
��

!!$
�$
 '

�0
.
$,#

(-
,��

((
%$'

"�
�
(+

,

Figure 20. Power efficiency comparison of ERSFQ-based JBSA, ERSFQ-
based SuperNPU, Loom@300K, and CryoLoom@77K considering no
cooling cost, normalized to Loom@300K.

#�-��
*

�&& ���
�* �"� ����� ���� ����

�

�

�

�

�

�
&(
$
�#
"/
��

��
&,

�(
�
��"
�"
�%

�.
,
"*!

��
&&

#"%
 �
�
&)
*

������+'�(���
��������

�&&$	����
�(.&�&&$	���

Figure 21. Power efficiency comparison of ERSFQ-based JBSA, ERSFQ-
based SuperNPU, Loom@300K, and CryoLoom@77K considering cool-
ing cost, normalized to Loom@300K.

shown in Fig. 19, which is 70.6% on average and 5.6× higher
than that of SuperNPU. In comparison to CMOS-based ac-
celerators, the power efficiency of RSFQ-based JBSA is 33×
(6.78×) higher than Loom@300K (CryoLoom@77K) when con-
sidering free cooling. However, when accounting for the cool-
ing cost, the normalized power efficiency decreases to 0.08
(0.18), which is deemed unacceptable due to the substantial
static power dissipation of RSFQ logic. Conversely, ERSFQ-
based JBSA achieves an average power efficiency that is 491×
(100.86×) higher than Loom@300K (CryoLoom@77K), consid-
ering free cooling. In VGGS, the maximum power efficiency
improvement reaches 1260× (254×) over Loom@300K (Cry-
oLoom@77K), as depicted in Fig. 20. Even when factoring in
the cooling cost, the normalized power efficiency of ERSFQ-
based JBSA still attains 1.23× (2.68×) higher than Loom@300K
(CryoLoom@77K) on average, as shown in Fig. 21.

Fig. 21 indicates that JBSA’s power efficiency varies across
different model architectures, particularly excelling with large-
scale workloads. This is attributed to three key factors: 1) PE
array scale. The scale of JBSA’s PE array is four times that
of SuperNPU. As the workload increases, the likelihood of
fully utilizing the PE array also rises, leading to enhanced
PE efficiency. 2) Dataflow limitation. SuperNPU’s use of WS
dataflow becomes less advantageous with larger workloads, as

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Su et al.

�� ��� ��� 	�� ��� ����

�!������

���

�
�

�
�

�����

�����
�������"
!����

�������������
� ���

Figure 22. The JJ count breakdown of SuperNPU and JBSA.

it requires substantial data reuse and larger buffers. In contrast,
JBSA’s data reuse is contingent upon the size of the convo-
lution filter, which is controllable, allowing for significantly
smaller buffer sizes. 3) Memory access impact. Larger work-
loads result in greater memory access requirements. JBSA
leverages the variable precision characteristics of data at each
layer of the neural network model to compress the precision
of memory access data. This effectively mitigates the signifi-
cant disparity between computation speed and memory access
speed, resulting in higher PE utilization.

5.4 JJ count evaluation
To unveil the area efficiency of JBSA, we conducted an in-depth
analysis of the JJ composition between JBSA and SuperNPU.
We implement gate-level RTL netlists for both of them and
determine the JJ count based on the number of gates in the
netlists. We include the PE array, three on-chip buffers, MUX
and DEMUX trees, as well as other on-chip modules shown in
Fig. 9. We also account for the JJ count of splitters and DFFs
for fan-out and path balancing. Additionally, we integrate PTL
transmitters and receivers with each SFQ logic gate to calcu-
late the JJ count after placement and routing. Fig. 22 shows the
JJ count breakdown of both designs. As the figure clearly indi-
cates, JBSA exhibits a remarkable 56% reduction in JJ overhead
compared to SuperNPU. This reduction primarily stems from
JBSA’s smaller on-chip buffer capacity, which is 6.9× smaller
than that of SuperNPU. Specifically, the JJ count of JBSA’s
on-chip buffer accounts for only 31% of the total JJ count,
while the JJ count of SuperNPU’s on-chip buffer dominates
the total JJ overhead, comprising 80% of it. Furthermore, the JJ
count of the PE array in JBSA is only 1.6× larger than that of
SuperNPU’s PE array, considering that the size of JBSA’s PE
array is approximately 4× larger than that of SuperNPU’s PE
array. This is primarily due to the fact that a single PE in JBSA
consumes fewer JJs than SuperNPU’s PE, specifically only 41%
of the number used in SuperNPU’s PE.

6 Related Work
Superconducting neural network accelerators. Research
on superconducting neural network (NN) accelerators has pri-
marily followed three distinct approaches: integrating super-
conducting technology into traditional frameworks, exploring
unconventional computing paradigms, and developing neuro-
morphic systems. The first approach involves incorporating
superconducting technology into conventional architectures,
such as hybrid SFQ-CMOS memory architectures [49] and

binarized neural network accelerators utilizing novel SFQ
counters [11]. The second approach delves into unconven-
tional computing paradigms, including stochastic computing
accelerators based on adiabatic quantum flux parametron logic
[7], temporal logic for bioinformatics algorithms [39, 40], and
unary SFQ encoding for signal processing [14]. A more chal-
lenging endeavor is to develop superconducting neuromor-
phic systems, such as spiking NN and novel neuron devices
[16, 34]. Unlike previous studies, this paper focuses on the
SFQ bit-serial NN accelerator, achieving superior performance
and power efficiency compared to the state-of-the-art SFQ NN
accelerator and CMOS designs, even with the cooling penalty.
CMOS bit-serial neural network accelerators. A lot of

researchers have proposed bit-serial CMOS NN accelerators
for power-efficient processing. A representative approach is
to exploit effective bits, specifically non-zero bits, in activa-
tion or weight data [1, 25]. Another attempt is to employ a
compression technique to reduce the precision of activations
in each convolutional layer to achieve superior throughput
[19]. Sharify et al. introduced Loom, which leverages precision
reduction and bit-serial processing for both activations and
weights [36]. Another bit-serial PE design based on a lookup
table was proposed in [21]. However, these studies investigate
only CMOS-based NN accelerator architectures. No prior work
designs a bit-serial architecture for SFQ DNN accelerators at
the 4 K temperature. Our target is to explore and optimize the
bit-serial architecture of the SFQ-based DNN accelerator and
demonstrate its potential in performance and power efficiency.

7 Conclusion
It is evident that the explosive growth of AI conflicts with
the end of Moore’s Law, making the search for CMOS alter-
native technologies a major challenge. This paper employs
superconducting single flux quantum technology in the design
of DNN accelerators and explores novel circuit architectures
and computational paradigms to address design incompatibili-
ties. The proposed JBSA adopts a bit-serial architecture and
an innovative data scheduling scheme, offering advantages
such as low resource consumption and reduced memory band-
width requirements. Furthermore, evaluations demonstrate
that JBSA achieves significantly higher energy efficiency and
performance compared to the state-of-the-art SFQ-based and
CMOS-based solutions. JBSA has the potential to serve as a
design paradigm for DNN accelerators based on emerging
circuit technologies.

Acknowledgments
This work was supported by the National Natural Science
Foundation of China (Grant No.62302477), and the CAS Project
for the Youth Innovation Promotion Association.

JBSA: A Bit-Serial Accelerator for Deep Neural Networks Using Superconducting SFQ Logic ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA

References
[1] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard

O’Leary, Roman Genov, and Andreas Moshovos. 2017. Bit-Pragmatic
DeepNeural Network Computing. In IEEE/ACM International Symposium
on Microarchitecture (MICRO). 382–394.

[2] Paul Alcorn. 2017. Hot Chips 2017: A Closer Look At Google’s
TPU v2. http://www.tomshardware.com/news/tpu-v2-google-machine-
learning,35370.html.

[3] Giorgos Armeniakos, Georgios Zervakis, Dimitrios Soudris, and Jörg
Henkel. 2022. Hardware Approximate Techniques for Deep Neural
Network Accelerators: A Survey. Comput. Surveys 55, 4, Article 83
(2022), 36 pages. https://doi.org/10.1145/3527156

[4] Parhami Behrooz. 2000. Computer Arithmetic: Algorithms and Hard-
ware Designs. Oxford University Press 19 (2000), 512583–512585.

[5] Ali Bozbey, Mustafa Altay Karamuftuoglu, Sasan Razmkhah, and Murat
Ozbayoglu. 2020. Single Flux Quantum Based Ultrahigh Speed Spiking
Neuromorphic Processor Architecture. arXiv preprint arXiv:1812.10354
(2020).

[6] Ilkwon Byun, Dongmoon Min, Gyu-hyeon Lee, Seongmin Na, and Jang-
woo Kim. 2020. CryoCore: A Fast and Dense Processor Architecture for
Cryogenic Computing. In IEEE/ACM International Symposium on Com-
puter Architecture (ISCA). 335–348. https://doi.org/10.1109/ISCA45697.
2020.00037

[7] Ruizhe Cai, Ao Ren, Olivia Chen, Ning Liu, Caiwen Ding, Xuehai Qian,
Jie Han, Wenhui Luo, Nobuyuki Yoshikawa, and Yanzhi Wang. 2019. A
Stochastic-Computing Based Deep Learning Framework Using Adiabatic
Quantum-Flux-Parametron Superconducting Technology. In IEEE/ACM
International Symposium on Computer Architecture (ISCA). 567–578.
https://doi.org/10.1145/3307650.3322270

[8] Ke Chen, Yue Gao, Haroon Waris, Weiqiang Liu, and Fabrizio Lombardi.
2023. Approximate Softmax Functions for Energy-Efficient Deep Neural
Networks. IEEE Transactions on Very Large Scale Integration Systems
(TVLSI) 31, 1 (2023), 4–16. https://doi.org/10.1109/TVLSI.2022.3224011

[9] Ran Cheng, Uday S. Goteti, and Michael C. Hamilton. 2019. Supercon-
ducting Neuromorphic Computing Using Quantum Phase-Slip Junc-
tions. IEEE Transactions on Applied Superconductivity 29, 5 (2019), 1–5.
https://doi.org/10.1109/TASC.2019.2892111

[10] Mohammed E. Elbtity, Peyton S. Chandarana, Brendan Reidy, Jason K.
Eshraghian, and Ramtin Zand. 2022. APTPU: Approximate Computing
Based Tensor Processing Unit. IEEE Transactions on Circuits and Systems
I: Regular Papers 69, 12 (2022), 5135–5146. https://doi.org/10.1109/TCSI.
2022.3206262

[11] Rongliang Fu, Junying Huang, Haibin Wu, Xiaochun Ye, Dongrui Fan,
and Tsung-Yi Ho. 2022. JBNN: A Hardware Design for Binarized Neural
Networks Using Single-Flux-Quantum Circuits. IEEE Trans. Comput. 71,
12 (2022), 3203–3214. https://doi.org/10.1109/TC.2022.3215085

[12] Kris Gaj, Eby G Friedman, and Marc J Feldman. 1997. Timing of Multi-
Gigahertz Rapid Single Flux Quantum Digital Circuits. Journal of VLSI
Signal Processing Systems for Signal, Image and Video Technology 16
(1997), 247–276. https://doi.org/10.1023/A:1007903527533

[13] Xiaoping Gao, Qi Qiao, Mingliang Wang, Minghui Niu, Huanli Liu,
Masaaki Maezawa, Jie Ren, and Zhen Wang. 2021. Design and ver-
ification of SFQ cell library for superconducting LSI digital circuits.
IEEE Transactions on Applied Superconductivity 31, 5 (2021), 1–5. https:
//doi.org/10.1109/TASC.2021.3062570

[14] Patricia Gonzalez-Guerrero, Meriam Gay Bautista, Darren Lyles, and
George Michelogiannakis. 2022. Temporal and SFQ Pulse-Streams En-
coding for Area-Efficient Superconducting Accelerators. In ACM Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 963–976. https://doi.org/10.1145/
3503222.3507765

[15] D Scott Holmes, Andrew L Ripple, and Marc AManheimer. 2013. Energy-
Efficient Superconducting Computing—Power Budgets and Require-
ments. IEEE Transactions on Applied Superconductivity 23, 3 (2013),
1701610–1701610. https://doi.org/10.1109/TASC.2013.2244634

[16] Junying Huang, Rongliang Fu, Xiaochun Ye, and Dongrui Fan. 2022. A
survey on superconducting computing technology: circuits, architec-
tures and design tools. CCF Transactions on High Performance Computing
4 (2022), 1–22. https://doi.org/10.1007/s42514-022-00089-w

[17] HPCS Lab in Seoul National University. 2023. CryoModel.
https://github.com/SNU-HPCS/CryoModel.

[18] Koki Ishida, Ilkwon Byun, Ikki Nagaoka, Kosuke Fukumitsu, Masamitsu
Tanaka, Satoshi Kawakami, Teruo Tanimoto, Takatsugu Ono, Jangwoo
Kim, and Koji Inoue. 2020. SuperNPU: An Extremely Fast Neural Pro-
cessing Unit Using Superconducting Logic Devices. In IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). 58–72. https:
//doi.org/10.1109/MICRO50266.2020.00018

[19] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M. Aamodt,
and Andreas Moshovos. 2016. Stripes: Bit-Serial Deep Neural Network
Computing. In IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1–12. https://doi.org/10.1109/MICRO.2016.7783722

[20] Gyu-Hyeon Lee, Dongmoon Min, Ilkwon Byun, and Jangwoo Kim. 2019.
Cryogenic Computer Architecture Modeling with Memory-Side Case
Studies. In IEEE/ACM International Symposium on Computer Architecture
(ISCA). 774–787. https://doi.org/10.1145/3307650.3322219

[21] Jinmook Lee, Changhyeon Kim, Sanghoon Kang, Dongjoo Shin,
Sangyeob Kim, and Hoi-Jun Yoo. 2019. UNPU: An Energy-Efficient
Deep Neural Network Accelerator With Fully Variable Weight Bit
Precision. IEEE Journal of Solid-State Circuits 54, 1 (2019), 173–185.
https://doi.org/10.1109/JSSC.2018.2865489

[22] Yuan Li, Ahmed Louri, and Avinash Karanth. 2022. SPACX: Silicon
Photonics-Based Scalable Chiplet Accelerator for DNN Inference. In IEEE
International Symposium on High Performance Computer Architecture
(HPCA). 831–845. https://doi.org/10.1109/HPCA53966.2022.00066

[23] K.K. Likharev and V.K. Semenov. 1991. RSFQ Logic/Memory Fam-
ily: A New Josephson-Junction Technology for Sub-Terahertz-Clock-
Frequency Digital Systems. IEEE Transactions on Applied Superconduc-
tivity 1, 1 (1991), 3–28. https://doi.org/10.1109/77.80745

[24] Evan McKinney, Mingkang Xia, Chao Zhou, Pinlei Lu, Michael Ha-
tridge, and Alex K Jones. 2023. Co-Designed Architectures for Modu-
lar Superconducting Quantum Computers. In IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). 759–772.
https://doi.org/10.1109/HPCA56546.2023.10071036

[25] Andreas Moshovos, Jorge Albericio, Patrick Judd, Alberto Delmas, Sayeh
Sharify, Mostafa Mahmoud, Tayler Hetherington, Milos Nikolic, Dy-
lan Malone Stuart, Kevin Siu, Zissis Poulos, Tor Aamodt, and Natalie En-
right Jerger. 2018. Identifying and Exploiting Ineffectual Computa-
tions to Enable Hardware Acceleration of Deep Learning. In IEEE In-
ternational New Circuits and Systems Conference (NEWCAS). 356–360.
https://doi.org/10.1109/NEWCAS.2018.8585656

[26] Oleg A. Mukhanov. 2011. Energy-Efficient Single Flux Quantum Tech-
nology. IEEE Transactions on Applied Superconductivity 21, 3 (2011),
760–769. https://doi.org/10.1109/TASC.2010.2096792

[27] Thomas Ortlepp, Olaf Wetzstein, Sonja Engert, Juergen Kunert, and
Hannes Toepfer. 2011. Reduced Power Consumption in Superconducting
Electronics. IEEE Transactions on Applied Superconductivity 21, 3 (2011),
770–775. https://doi.org/10.1109/TASC.2011.2117410

[28] S.V. Polonsky, V.K. Semenov, and A.F. Kirichenko. 1994. Single Flux
Quantum B Flip-Flop and Its Possible Applications. IEEE Transactions
on Applied Superconductivity 4, 1 (1994), 9–18. https://doi.org/10.1109/
77.273059

https://doi.org/10.1145/3527156
https://doi.org/10.1109/ISCA45697.2020.00037
https://doi.org/10.1109/ISCA45697.2020.00037
https://doi.org/10.1145/3307650.3322270
https://doi.org/10.1109/TVLSI.2022.3224011
https://doi.org/10.1109/TASC.2019.2892111
https://doi.org/10.1109/TCSI.2022.3206262
https://doi.org/10.1109/TCSI.2022.3206262
https://doi.org/10.1109/TC.2022.3215085
https://doi.org/10.1023/A:1007903527533
https://doi.org/10.1109/TASC.2021.3062570
https://doi.org/10.1109/TASC.2021.3062570
https://doi.org/10.1145/3503222.3507765
https://doi.org/10.1145/3503222.3507765
https://doi.org/10.1109/TASC.2013.2244634
https://doi.org/10.1007/s42514-022-00089-w
https://doi.org/10.1109/MICRO50266.2020.00018
https://doi.org/10.1109/MICRO50266.2020.00018
https://doi.org/10.1109/MICRO.2016.7783722
https://doi.org/10.1145/3307650.3322219
https://doi.org/10.1109/JSSC.2018.2865489
https://doi.org/10.1109/HPCA53966.2022.00066
https://doi.org/10.1109/77.80745
https://doi.org/10.1109/HPCA56546.2023.10071036
https://doi.org/10.1109/NEWCAS.2018.8585656
https://doi.org/10.1109/TASC.2010.2096792
https://doi.org/10.1109/TASC.2011.2117410
https://doi.org/10.1109/77.273059
https://doi.org/10.1109/77.273059

ICS ’25, June 8–11, 2025, Salt Lake City, UT, USA Su et al.

[29] G S Priyanka, M Venkatesan, and P Prabhavathy. 2023. Advancements
in Quantum Machine Learning and Quantum Deep Learning: A Com-
prehensive Review of Algorithms, Challenges, and Future Directions.
In International Conference on Quantum Technologies, Communications,
Computing, Hardware and Embedded Systems Security (iQ-CCHESS). 1–8.
https://doi.org/10.1109/iQ-CCHESS56596.2023.10391745

[30] Nitin Rathi, Indranil Chakraborty, Adarsh Kosta, Abhronil Sengupta,
Aayush Ankit, Priyadarshini Panda, and Kaushik Roy. 2023. Exploring
Neuromorphic Computing Based on Spiking Neural Networks: Algo-
rithms to Hardware. Comput. Surveys 55, 12, Article 243 (mar 2023),
49 pages. https://doi.org/10.1145/3571155

[31] Wojciech Romaszkan, Tianmu Li, and Puneet Gupta. 2022.
SASCHA—Sparsity-Aware Stochastic Computing Hardware Ar-
chitecture for Neural Network Acceleration. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) 41, 11
(2022), 4169–4180. https://doi.org/10.1109/TCAD.2022.3197503

[32] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and
Tushar Krishna. 2018. SCALE-Sim: Systolic CNN Accelerator Simulator.
arXiv preprint arXiv:1811.02883 (2018).

[33] L. Schindler and T. Hall. 2023. ColdFlux RSFQ Logic Cell Library for MIT-
LL SFQ Process. https://github.com/sunmagnetics/RSFQlib. Version:
3.0.

[34] Michael Schneider, Emily Toomey, Graham Rowlands, Jeff Shainline,
Paul Tschirhart, and Ken Segall. 2022. SuperMind: a survey of the
potential of superconducting electronics for neuromorphic computing.
Superconductor Science and Technology 35, 5 (2022), 053001. https://doi.
org/10.1088/1361-6668/ac4cd2

[35] Michael L. Schneider, Christine A. Donnelly, Stephen E. Russek, Burm
Baek, Matthew R. Pufall, Peter F. Hopkins, and William H. Rippard. 2017.
Energy-efficient single-flux-quantum based neuromorphic computing.
In IEEE International Conference on Rebooting Computing (ICRC). 1–4.
https://doi.org/10.1109/ICRC.2017.8123634

[36] Sayeh Sharify, Alberto Delmas Lascorz, Kevin Siu, Patrick Judd, and
Andreas Moshovos. 2018. Loom: Exploiting Weight and Activation
Precisions to Accelerate Convolutional Neural Networks. In ACM/IEEE
Design Automation Conference (DAC). 1–6. https://doi.org/10.1109/DAC.
2018.8465915

[37] Ourania Spantidi, Georgios Zervakis, Iraklis Anagnostopoulos, and Jörg
Henkel. 2022. Energy-Efficient DNN Inference on Approximate Accel-
erators Through Formal Property Exploration. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) 41, 11
(2022), 3838–3849. https://doi.org/10.1109/TCAD.2022.3197522

[38] Guang-Ming Tang, Kensuke Takata, Masamitsu Tanaka, Akira Fujimaki,
Kazuyoshi Takagi, and Naofumi Takagi. 2015. 4-bit Bit-Slice Arithmetic
Logic Unit for 32-bit RSFQMicroprocessors. IEEE Transactions on Applied
Superconductivity 26, 1 (2015), 1–6. https://doi.org/10.1109/TASC.2015.
2507125

[39] Georgios Tzimpragos, Dilip Vasudevan, Nestan Tsiskaridze, George
Michelogiannakis, Advait Madhavan, Jennifer Volk, John Shalf, and Tim-
othy Sherwood. 2020. A Computational Temporal Logic for Supercon-
ducting Accelerators. In ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
435–448. https://doi.org/10.1145/3373376.3378517

[40] Georgios Tzimpragos, Jennifer Volk, Dilip Vasudevan, Nestan
Tsiskaridze, GeorgeMichelogiannakis, AdvaitMadhavan, John Shalf, and
Timothy Sherwood. 2021. Temporal Computing With Superconductors.
IEEE Micro 41, 3 (2021), 71–79. https://doi.org/10.1109/MM.2021.3066377

[41] Yaman Umuroglu, Davide Conficconi, Lahiru Rasnayake, Thomas B
Preusser, and Magnus Själander. 2019. Optimizing Bit-Serial Matrix
Multiplication for Reconfigurable Computing. ACM Transactions on
Reconfigurable Technology and Systems (TRETS) 12, 3 (2019), 1–24. https:
//doi.org/10.1145/3337929

[42] Di Wu, Jingjie Li, Ruokai Yin, Hsuan Hsiao, Younghyun Kim, and
Joshua San Miguel. 2020. UGEMM: Unary Computing Architecture
for GEMM Applications. In IEEE/ACM International Symposium on Com-
puter Architecture (ISCA). 377–390. https://doi.org/10.1109/ISCA45697.
2020.00040

[43] DiWu and Joshua SanMiguel. 2022. uSystolic: Byte-Crawling Unary Sys-
tolic Array. In IEEE International Symposium on High Performance Com-
puter Architecture (HPCA). 12–24. https://doi.org/10.1109/HPCA53966.
2022.00010

[44] Wm A Wulf and Sally A McKee. 1995. Hitting the Memory Wall: Impli-
cations of the Obvious. ACM SIGARCH Computer Architecture News 23,
1 (1995), 20–24. https://doi.org/10.1145/216585.216588

[45] Haipeng Zha, Naveen Kumar Katam, Massoud Pedram, and Murali An-
navaram. 2022. HiPerRF: A Dual-Bit Dense Storage SFQ Register File. In
IEEE International Symposium on High Performance Computer Architec-
ture (HPCA). 415–428. https://doi.org/10.1109/HPCA53966.2022.00038

[46] Huilin Zhang, Chen Gang, Chen Xu, Guoliang Gong, and Huaxiang Lu.
2023. Brain-Inspired Spiking Neural Network Using Superconducting
Devices. IEEE Transactions on Emerging Topics in Computational Intelli-
gence 7, 1 (2023), 271–277. https://doi.org/10.1109/TETCI.2021.3089328

[47] Jiadi Zhu, Teng Zhang, Yuchao Yang, and Ru Huang. 2020. A compre-
hensive review on emerging artificial neuromorphic devices. Applied
Physics Reviews 7, 1 (2020), 011312. https://doi.org/10.1063/1.5118217

[48] D. Zinoviev, P. Bunyk, A. Rylyakov, K. Likharev,
and P. Litskevitch. 2023. SUNY RSFQ Cell Library.
http://www.physics.sunysb.edu/Physics/RSFQ/Lib/index.html.

[49] Farzaneh Zokaee and Lei Jiang. 2021. SMART: A Heterogeneous Scratch-
pad Memory Architecture for Superconductor SFQ-Based Systolic CNN
Accelerators. In IEEE/ACM International Symposium on Microarchitecture
(MICRO). 912–924. https://doi.org/10.1145/3466752.3480041

https://doi.org/10.1109/iQ-CCHESS56596.2023.10391745
https://doi.org/10.1145/3571155
https://doi.org/10.1109/TCAD.2022.3197503
https://doi.org/10.1088/1361-6668/ac4cd2
https://doi.org/10.1088/1361-6668/ac4cd2
https://doi.org/10.1109/ICRC.2017.8123634
https://doi.org/10.1109/DAC.2018.8465915
https://doi.org/10.1109/DAC.2018.8465915
https://doi.org/10.1109/TCAD.2022.3197522
https://doi.org/10.1109/TASC.2015.2507125
https://doi.org/10.1109/TASC.2015.2507125
https://doi.org/10.1145/3373376.3378517
https://doi.org/10.1109/MM.2021.3066377
https://doi.org/10.1145/3337929
https://doi.org/10.1145/3337929
https://doi.org/10.1109/ISCA45697.2020.00040
https://doi.org/10.1109/ISCA45697.2020.00040
https://doi.org/10.1109/HPCA53966.2022.00010
https://doi.org/10.1109/HPCA53966.2022.00010
https://doi.org/10.1145/216585.216588
https://doi.org/10.1109/HPCA53966.2022.00038
https://doi.org/10.1109/TETCI.2021.3089328
https://doi.org/10.1063/1.5118217
https://doi.org/10.1145/3466752.3480041

	Abstract
	1 Introduction
	2 Background
	2.1 SFQ logic and its characteristics
	2.2 Bit-serial multiply-accumulate operation for signed numbers

	3 Motivation
	3.1 Actual performance of SuperNPU
	3.2 Area overhead of SuperNPU
	3.3 Ifmap buffer underutilization of SuperNPU
	3.4 Baseline SFQ-based bit-serial DNN design
	3.5 Research challenges and goals

	4 JBSA Architecture
	4.1 Overall architecture
	4.2 SFQ-based bit-serial PE design
	4.3 Work distribution model design
	4.4 Design parameter selection

	5 Evaluation
	5.1 Evaluation methodology
	5.2 Performance evaluation
	5.3 Power efficiency evaluation
	5.4 JJ count evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

