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JBNN: A Hardware Design for Binarized Neural
Networks using Single-Flux-Quantum Circuits

Rongliang Fu, Junying Huang, Haibin Wu, Xiaochun Ye, Dongrui Fan, and Tsung-Yi Ho

Abstract—As a high-performance application of low-temperature superconductivity, superconducting single-flux-quantum (SFQ) circuits
have high speed and low-power consumption characteristics, which have recently received extensive attention, especially in the field of
neural network inference accelerations. Despite these promising advantages, they are still limited by storage capacity and manufacture
reliability, making them unfriendly for feedback loops and very large-scale circuits. The Binarized Neural Network (BNN), with minimal
memory requirements and no reliance on multiplication, is undoubtedly an attractive candidate for implementing inference hardware
using SFQ circuits. This work presents the first SFQ-based Binarized Neural Network inference accelerator, namely JBNN, with a new
representation to binarize weights and activation variables. Every SFQ gate is essentially a pipeline stage, making conventional design
methods of the accumulator unsuitable for SFQ circuits. So an SFQ-based accumulative parallel counter using SFQ logic cells including
T1, OR, and AND is designed to realize the accumulation, where the data size is reduced to a quarter after passing the XNOR column
and the AU layer, largely declining the hardware cost. Our evaluation shows that the proposed design outperforms a cryogenic CMOS-
based BNN accelerator design running at 77K by 70.92 times while maintaining 97.89% accuracy on the MNIST benchmark dataset.
Without the cooling cost, the power efficiency increases up to 929.18 times.

Index Terms—Superconducting, Single-Flux-Quantum, Accelerator, Binarized Neural Network.
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1 INTRODUCTION

B INARIZED Neural Networks (BNNs) are the most ex-
treme vision of low-precision neural networks with

only binary weights and activations, i.e., +1 and -1. While
reducing computation and memory requirements, BNN has
recently been closing the accuracy gap and becoming more
accurate on larger datasets like ImageNet [1]. Hardware
acceleration of BNN, including FPGA- and ASIC-based im-
plementations, has been extensively investigated to achieve
high performance and energy efficiency simultaneously [2]–
[7]. However, most of these designs are CMOS-based and
suffer from a performance limitation as the era of Moore’s
law draws close.

Currently, we are running out of a convincing option
to propel the performance of the computer system further,
while maintaining its power budget in the post-Moore
era. Therefore, innovative new technologies like quantum,
neuromorphic, approximate, and stochastic computing may
provide solutions to these challenges. And it is time to ac-
tively exploit emerging device technologies with significant
potentials and make a serious effort to improve their fea-
sibility by resolving their limitations. Among several candi-
dates, Josephson Junction (JJ) based superconducting single-
flux-quantum (SFQ) logic family is a highly promising so-
lution due to their ultra-fast switching speed (∼ 1 ps) and
low switching energy (∼ 10−19 J/bit), which is six orders of
magnitude smaller than semiconductor transistors [8], [9].
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In 2004, International Technology Roadmap for Semicon-
ductors (ITRS) listed RSFQ as a promising next-generation
integrated circuit technology [10]. Then, the Intelligence Ad-
vanced Research Projects Activity (IARPA) proposed the C3
project to develop a superconducting computer in 2013 [11].
Since 2017, superconducting electronic (SCE) technology
has been listed in the International Roadmap for Devices
and Systems (IRDS), becoming the frontier position and
international competition hotspot in the post-Moore era [12].
As a member of superconducting SFQ logic families, it has
been demonstrated that a rapid single flux quantum (RSFQ)-
based T flip-flop (TFF) can operate at up to 770 GHz at 4.2
K [13]. With this technology, it is feasible to improve the
device’s clock frequency (and thus performance) by an order
of magnitude [14], [15].

Focusing on these high potentials has increased inter-
est in investigating superconducting accelerators in recent
years, ranging from attempts to port existing CMOS-based
accelerators to superconducting technology with less tradi-
tional computing paradigms. Table 1 shows a summary of
these accelerators realized by superconducting logic. The
application type, improvements in energy efficiency and
performance compared to CMOS counterparts, improve-
ments in energy-delay product compared to conventional
SFQ, and assumed cooling cost are listed. Tannu et al.
[16] developed an reciprocal quantum logic (RQL)-based
accelerator for SHA-256 engines commonly used in bitcoin
mining applications. Ishida et al. [17] presented an SFQ-
based neural processing unit (NPU) design with a similar
hardware structure to the TPU [18] core. Other interesting
approaches that target superconducting accelerators exploit
unconventional computing paradigms that match well with
the characteristics of superconductor logic. One such re-
lated work is to use the adiabatic quantum-flux-parametron
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TABLE 1
Brief summary of hardware accelerators using superconducting logic.

Accelerator SFQ family Application Energy-efficiency gains
compared to CMOS

Performance gains
compared to CMOS

Cooling cost normalized
to circuit power

SHA256 [16] RQL Bitcoin mining 46x 20% 300x
Neural process unit [17] ERSFQ DNN 1.23x 18.7x 400x
SC-based DNN accelerator [19] AQFP Handwritten digit classification 6.9× 104x NA NA

Race logic-based accelerator [20], [21] Asynchronous SFQ Needleman-Wunsch sequence alignment NA 32∼37x NA
Race trees NA 35∼40x NA

(AQFP) logic for stochastic computing (SC)-based deep
learning accelerators [19]. Tzimpragos et al. took a different
approach, proposed the computational temporal logic con-
cept, and demonstrated superconducting accelerators used
for the Needleman-Wunsch sequence alignment algorithm
and race trees as a proof of concept [20], [21].

While JJ-based superconducting circuits can provide sig-
nificant power and performance benefits, this technology
faces two critical challenges: limited device density and lack
of compact memory technology. The current SFQ technol-
ogy is roughly equivalent to a “250 nm” equivalent CMOS
node [22]. However, existing accelerators mentioned above
often require a lot of JJs, on the order of millions. There-
fore, it is pretty difficult to manufacture these very large-
scale accelerator chips for practical applications when the
reliability and yield of superconducting fabrication technol-
ogy are considered. Moreover, prior work usually adopts a
shift-register-based memory array for an SFQ convolutional
neural network (CNN) accelerator since it fully utilizes the
SFQ gate-level pipelining and does not require complex
controls. Unfortunately, the inference throughput of SFQ-
based CNN accelerators would be seriously degraded with
this on-chip memory structure [23]. Consequently, the use
of accelerators built with SFQ technology in the near term
is likely to be restricted to application domains that have
a high demand for speed but only require a tiny chip
with a negligible amount of on-chip memory footprint. The
BNN computation commonly used in resource-limited and
power-constrained scenarios fits well in such applications,
where a bit-wise XNOR operation replaces the hardware-
hungry multiplier and the memory storage is drastically
reduced.

To realize an efficient BNN accelerator using SFQ logic,
several specific challenges need to be overcome. One major
challenge is the implementation of the accumulator due to
the super-deep pipeline nature of SFQ logic. This is because
a feedback loop is needed to implement the accumulation
operation, causing significant performance degradation as
the next clock pulse should wait for a very long data transfer
through the feedback path. Moreover, it is also challenging
to implement SFQ-based on-chip memory due to its low
driving capability and scalability [17], [23]. In other words,
how to implement the BNN architecture that maintains the
high-speed advantage of SFQ logic but does not require on-
chip storage is another challenge.

This paper is the first to develop an SFQ-based BNN
accelerator, namely JBNN, using superconducting technol-
ogy. We overcome the feedback loop limitation using a
pipeline-based neural processing unit without feedback
loops, including an accumulative parallel counter (APC)
and a comparator. In JBNN, the accumulation results do

not need to be stored on-chip, and weights and activations
are alternately fed directly to JBNN. While maintaining
97.89% accuracy on the MNIST [24] benchmark dataset,
our evaluation shows that JBNN significantly outperforms
a cryogenic CMOS design working at 77K by 70.92 times
in performance when running BNN workloads. With the
cooling cost considered, JBNN’s power efficiency is 3.09
times higher than the cryogenic CMOS design. But, with
free cooling cost assumed, JBNN’s performance per watt
becomes significantly higher than the cryogenic design by
929.18 times.

In summary, our work makes the following contribu-
tions:

1) To the best of our knowledge, this is the first work to
design an SFQ-based purely combinational BNN ac-
celerator architecture with a purely pipeline-based
neural processing unit without feedback loops.

2) A new representation is used for the normalization
of weights and activations, making the inference
process more straightforward and friendly to the
hardware implementation of binarized neural net-
works.

3) Experimental results show that JBNN can deliver
extreme performance and power efficiency, outper-
forming a cryogenic CMOS design running at 77K
by 70.92 times and 929.18 times, respectively, while
maintaining 97.89% accuracy on the MNIST bench-
mark dataset.

2 PRELIMINARIES

2.1 Single Flux Quantum logic
The zero resistance phenomenon of superconductivity that
the resistance of a substance suddenly disappears under
low-temperature conditions, was discovered in 1911 at Lei-
den by Heike Kamerlingh Onnes and Giles Holst after
Onnes was able to liquefy helium in 1908 [25]. Since that, es-
pecially the publication of the BCS theory in 1957 [8] which
revolutionized the understanding of superconductivity, var-
ious studies of superconductivity have emerged. With the
discovery of the Josephson tunneling junction by Brian
David Josephson [9] in 1962, the modern superconducting
logic circuit developed rapidly. A typical Josephson junction
structure is shown in Fig. 1(a), consisting of three layers.
The upper and lower layers are made of superconducting
materials, and the middle layer is a thin insulating layer
as the barrier. This structure constitutes a superconductor-
insulator-superconductor (SIS) junction, where the super-
conducting current can tunnel through the potential barrier.
There is a phase difference φ between the superconductors
on both sides of the barrier. When the current I = Ic sinφ
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Fig. 1. (a) Superconducting rings with Josephson junctions. (b) Equiva-
lent circuit of (a), where the inductance and cross marks represent the
superconductor portion and JJs of each ring, respectively.
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Fig. 2. (a) Simplified JJ-level schematic of DFF; (b) Timing of DFF.

reaches the critical current Ic, the junction can generate an
SFQ pulse that is quantized as Φ0 = h

2e ≈ 2.07× 10−15Wb.
As shown in Fig. 1(b) which is the equivalent circuit of
Fig. 1(a), the circle with a cross represents an SFQ stored in
the superconducting ring on the left, and superconducting
rings in series can form a type of SFQ wiring, namely a
Josephson transmission line (JTL).

2.1.1 Elementary Logic Gates
In RSFQ technology, binary information is represented as
the existence or absence of an SFQ pulse during a specific
clock period, respectively. In the following, several typical
superconducting RSFQ logic gates are presented.

A. DFF
The RSFQ D flip-flop (DFF) is mainly used to store SFQ

pulses, whose simplified JJ-level schematic and timing dia-
gram are shown in Fig. 2. When an SFQ pulse arrives at the
input port data, if the total current of the input current from
the input port data and the bias current exceeds the critical
current of J1, J1 will switch from the superconducting
state to the voltage state and generate an SFQ pulse storing
in the superconducting ring J1-L-J3. In this state, if the
clock pulse clk arrives and the sum of the current from
clk and the current in the superconducting ring J1-L-J3
exceeds the critical current of J3, J3 will switch from the
superconducting state to the voltage state and generate an
SFQ pulse at the output port out, meaning the logic ‘1’.

On the other hand, if there is no SFQ pulse stored in
the superconducting loop of the DFF when clk arrives, the
current from clk is not large enough to change the state of
J3. In this case, no SFQ pulse is produced at the output port
out, meaning the logic ‘0’.

B. Splitter
Due to the pulse-based representation of signals in RSFQ

logic, most gates exhibit a fan-out of one. However, many
gates have larger fan-outs in the circuit design. Thus, a
new gate called the splitter is introduced in RSFQ logic

JJ-level schematic of an RSFQ splitter
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Fig. 3. (a) JJ-level schematic of a 1-to-2 splitter. (b) Example of the
splitter insertion.
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Fig. 4. (a) JJ-level schematic of RSFQ CB3 gate. (b) State transition
diagrams and symbol of T1 flip-flop.

to solve the multi-fan-out problem. Generally, 1-to-2 and
1-to-3 splitters are noted as SPL and SPL3, respectively,
where SPL’s schematic is shown in Fig. 3(a). As illustrated
in Fig. 3(b), the gate A can directly connect to gates B and
C in CMOS circuits. Whereas in a superconducting RSFQ
circuit, a splitter must be inserted at the output port of gate
A to drive the other two gates.

C. Confluence Buffer
A confluence buffer (CB) allows the merging of SFQ

pulses from two or three different sources. It produces an
output SFQ pulse for each incoming pulse from either input.
Generally, 2-input and 3-input confluence buffers are noted
as CB2 and CB3, respectively. As shown in Fig. 4(a), a
CB3 consists of 8 JJs [26]. Both J1-J4, J2-J5, and J3-J6
individually form a buffer structure [27]. Consider an input
pulse arriving at terminal in1. The input pulse from in1
arrives at the input of buffer J1-J4 and switches J1, which
transfers the SFQ pulse further along. The resulting signal
arrives at the output of buffer J2-J5 and J3-J6, switching
escape junction J5 and J6 and preventing this pulse from
propagating backward to terminal in2 and in3. Finally, this
pulse switches J8, producing the output at terminal out.
The CB3’s behavior is symmetric when the input pulse
arrives at in2 or in3. It transfers all pulses from either of its
inputs to the output with appropriate delay [28]. Therefore,
the confluence buffer operates as an asynchronous OR gate.
In this work, the CB3 is used to design a full adder.

D. T1 Flip-Flop
A T1 flip-flop has two inputs, a data input t and a reset

input rd, and two outputs, a synchronous output sum and
an asynchronous output out. As shown in Fig. 4(b), the
state transition diagram has two stable states: ‘1’ and ‘0’,
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Fig. 5. The clocking schemes for RSFQ circuits: (a) The concurrent-flow
clocking; (b) The counter-flow clocking.

characterized by the presence or absence of a magnetic flux
quantum. It can be seen that each pulse arriving at t switches
the T1 state. When an even-numbered input pulse arrives at
t after the last reset, a pulse is generated at its output out. In
state ‘1’, a pulse arriving at the input rd resets the T1 to the
state ‘0’ and produces an output pulse at the output sum.
This work uses the T1 flip-flop to design a full adder.

2.1.2 Clocking in RSFQ
Clocking in superconducting RSFQ logic is much more
challenging than CMOS for several reasons [29]. Firstly, due
to the peculiar characteristics of RSFQ, most of the logic
gates require a clock signal. This feature results in a giant
clock distribution network (CDN) because there are many
more clock sinks than traditional CMOS circuits, further
aggravating the CDN design issues. Secondly, an ultra-high
frequency operation in RSFQ circuits requires a reliable
ultra-high-speed CDN with controlled clock skew and jitter.
Moreover, the methods developed in CMOS are either not
applicable to RSFQ or never implemented. Thirdly, the
timing uncertainties in RSFQ technology are much more
severe due to fabrication process variations, RLC parasitic,
bias distribution networks, and thermal fluctuations.

A few commonly-used clocking modes in RSFQ cir-
cuits are concurrent-flow clocking, clock-follow-data, and
counter-flow clocking [30]. In concurrent-flow clocking, the
clock and data flow in the same direction, and the clock
arrives before the data, as shown in Fig. 5(a). Characteristi-
cally, concurrent-flow clocking could achieve the maximum
fastest performance, which is only limited by the intrinsic
speed of the gates used in the circuit. In clock-follow-data
clocking, the data signal released by the clock from the
first cell of the data path arrives at the second cell earlier
than the clock. Its minimum clock period is the same as
for the concurrent-flow clocking. However, in counter-flow
clocking, the clock flows in the opposite direction to the
data, resulting in a positive clock skew, as shown in Fig. 5(b).
Therefore, concurrent-flow clocking is used in this work
targeting high performance.

2.1.3 Path Balancing
Due to the clocking nature of SFQ circuits, they usually need
to satisfy the path balancing requirement that all inputs
of a clocked SFQ gate have the same logic level to ensure
its correct operation. The logic level of gate g in a circuit
network N is the length of the longest path in terms of the
clocked gate count from any primary input (PI) of N to g. If
there is a difference among logic levels of fan-ins of a gate,
some DFFs should be inserted into outputs of fan-in gates
with minor logic levels [31].

Fig. 6(a) shows an example circuit with two gates, g1
and g2. The first fan-in (w1) of the g2 gate has a logic level
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Fig. 6. An example on the necessity of path balancing for function-
correct operation in SFQ circuits. (a) and (c) are gate-level schematics
with and without path balance, respectively. (b) and (d) are the time
diagrams of (a) and (c), respectively.

of 1 and the second fan-in (c) has a logic level of 0. One DFF
should be inserted into c, as shown in Fig. 6(c). Without
path balancing, correct pulses on c are consumed by this g2
gate one clock before the arrival of the corresponding pulses
on the input w1. Hence, g2 can not produce correct output
values.

2.1.4 Comparison to CMOS logic

As a well-established, reliable, and reproducible, SFQ-based
technology, RSFQ logic [28] has high speed and low power
consumption characteristics. Table 2 summarizes the dif-
ferences between RSFQ logic and CMOS logic in terms
of active components, passive components, logic encoding,
logic storage, driver strength, clocking, power consumption,
and interconnects. It can be seen that SFQ circuits operating
at frequencies of tens to hundreds of gigahertz can offer two
orders of magnitude speed-up in clock frequency compared
to their CMOS counterparts due to the pulse-based logic en-
coding, the gate-level pipeline structure, the novel clocking,
and fast interconnects. SFQ logic utilizes quantized voltage
pulses as signals in digital data generation, enabling fast
switching. Meanwhile, almost all SFQ logic gate requires
a clock signal to release their output, thus SFQ circuits
naturally have a gate-level pipeline structure. In this voltage
pulse-driven logic, a novel clocking scheme, i.e., concurrent-
flow clocking, where the maximum frequency of the SFQ
circuit is determined by the timing parameters of the logic
cells in the circuit, is employed. It has been shown that
this clock method can achieve higher frequencies than zero-
skew clocking, widely used in CMOS technology. A detailed
description of the superconducting clocking and timing can
be found in [30]. Moreover, the voltage pulses in RSFQ
circuits can be transmitted by the passive transmission line
(PTL) almost losslessly, with the transmission speed at about
1/3 the speed of light.
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TABLE 2
Comparison of RSFQ circuits and CMOS circuits.

RSFQ circuits CMOS circuits
Active component JJ MOSFET
Passive component Inductance Capacitance
Logic encoding SFQ pulse Voltage level
Logic storage Flux Charge
Logic gate Synchronous Asynchronous
Drive strength 1 ≥ 1
Clocking Flow clocking Zero-skew clocking
Frequency 10∼100GHz ∼1GHz

Power consumption Static power >
Dynamic power

Static power ≤
Dynamic power

Power supply Bias current Voltage
Magnetic interference Shielding & Moats /
Interconnect JTL/PTL Metal RC line

Another impressive feature of RSFQ logic is that static
power dominates the total power consumption. For in-
stance, in RSFQ logic, the dynamic power is around 13
nW per gate compared to 800 nW per gate of static power
[32]. This 60x ratio is due to the resistive DC bias network.
Fortunately, the static power of RSFQ logic can be elimi-
nated by energy-efficient RSFQ (ERSFQ) logic [33] which
is an energy-efficient version of RSFQ logic. It completely
excludes the static power dissipation of RSFQ by replacing
the bias resistors in RSFQ with JJs with the overhead of
doubled dynamic power consumption by JJs. The power
of ERSFQ can be written as Ptotal = 2IbiasΦ0f , where
Ibias and f are bias current and switching frequency of the
circuit, respectively. This leads to switching energy of about
10−19 J, which is six orders of magnitude lower than CMOS
transistors.

2.2 Binarized Neural Networks

As a promising technique for the inference in neural net-
works on resource-limited devices, the binarized neural
networks considerably save the storage and computation by
constraining weights and activations to +1 or -1 [34], [35].
To binarize real-valued variables, there are generally two
binarization functions [36]. The first binarization function is
deterministic:

xb = Sign(x) =

{
1 x ≥ 0

−1 x < 0
(1)

where xb is the binarized variable of the real-valued variable
x that is from weights or activations. Another attractive
binarization function is stochastic:

xb = Sign(x) =

{
1 with probability p = σ(x)

−1 with probability 1− p
(2)

where xb is the binarized variable and σ(x) is:

σ(x) = clip
(
x+ 1

2
, 0, 1

)
= max

(
0,min(1,

x+ 1

2
)

)
(3)

But the stochastic binarization function requires good qual-
ity random numbers generated by the hardware, which has
a considerable challenge to implement. So in this work, the
Sign binarization function is chosen in the inference process.
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Fig. 7. Schematics of (a) the basic operation and (b) the proposed neural
processing unit.

In a full-precision convolutional neural network with
the non-linear activation function f , the basic operation, as
shown in Fig. 7 (a), can be expressed as

y = f

(∑
i

wi · xi

)
(4)

By contrast, the neuron activations in a BNN only have the
same two possible values, namely -1 or +1, as the weights,
except in the first layer. So the products between weights
and neuron activations and the sum in Equation 4 can be
replaced by the logic XNOR operation and the popcount
operation that counts the number of ones in a data vector, re-
spectively. Furthermore, the resulting value can be obtained
by comparing it to a trained threshold value µ. Therefore,
for a BNN, Equation 4 becomes:

yb = Sign
(

popcount
i

(
XNOR

(
wb

i , x
b
i

))
− µ

)
(5)

As shown in Algorithm 1, the inference process of the
BNN mainly consists of three subprocesses. The input xxx of
the first layer is not binarized, where the activation aaab1 needs
to be calculated by the more complex operations than the
XNOR and popcount operations:

aaab1 = Sign

(∑
i

www1 · xxx−µµµ

)
(6)

Besides, the Sign operation is not performed on the output
layer. The index of the maximum of its output vector is the
predicted value of the whole neural network.

3 SFQ-BASED BNN ACCELERATOR

As aforesaid, with binarized weights and activations, the
dominant computations of a BNN model become binary
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multiply-accumulate operations, which can be further im-
plemented in a highly hardware-friendly way by simply
performing the XNOR and popcount operations. The signif-
icant characteristics of SFQ circuits, especially high-speed
computation, make them have considerable advantages in
computational demanding tasks. Furthermore, In SFQ logic,
the XNOR operation can be realized using a supercon-
ducting XNOR gate. In this section, an SFQ-based BNN
accelerator architecture is proposed, which considers the
limitation of SFQ circuits on the storage while combining
the high-performance advantages of SFQ circuits and the
low storage demanding of BNN.

3.1 Architecture
In original BNNs, weights and activation are restricted to
-1 or 1, presented to 2 bits or 1 bit. Generally, with one bit,
zero is used to present -1, meaning that extra operations are
required to obtain the real value of the accumulation.

In order to simplify the computation process and save
the storage for the hardware implementation, the new rep-
resentation (SN) is used with referring to Stochastic Com-
puting:

xb =
xb′ + 1

2
, xb′ = Sign(x) =

{
1 x ≥ 0

−1 x < 0
(7)

As shown in Table 3, its SN is 1 when x ≥ 0 and
0 otherwise. For the multiplication operation, the logical
XNOR operation still works. For the addition operation,
there are:

n∑
i=0

xb′

i = 2

n∑
i=1

xb
i − n (8)

Since almost all gates require a DC clock signal, SFQ
circuits naturally have a deep pipeline structure, which in-
creases the difficulty of avoiding RAW hazards and has sig-
nificant disadvantages for cyclic control circuits. Therefore,
the architecture of the neural processing unit is proposed as
shown in Fig. 7 (b).

The neural processing unit contains a XNOR column,
a n-bit SFQ-based APC and a log2 (n)-bit comparator. In
Fig. 7 (b), xxx[i] and www[i] (1 ≤ i ≤ n) enter the network
alternately. Then the neural processing unit completes the
multiplication operation, the accumulation operation, and

Algorithm 1: Conventional BNN Inference Process
Input: the number of layers L, a input vector xxx,

trained binary weights wwwb, and a trained
threshold vector µµµ

Output: the MLP output aaaL
1 1. First layer:
2 aaab1 = Sign

(
wwwb

1 · xxx−µµµ1

)
3 2. Remaining hidden layers:
4 for i=2 to L do
5 aaai = popcount

(
XNOR

(
wwwb

i , aaa
b
i−1

))
6 aaabi = Sign (aaai −µµµi)

7 3. Output layer:
8 aaaL = popcount

(
XNOR

(
wwwb

L, aaa
b
L−1

))
−µµµL

9 return aaaL;

TABLE 3
-1/1 coding methods and multiplication in SN.

x > < Multiplication SN
Input bitstream Output

Sign 1 -1 1 ∗ 1 1⊙ 1 1
Binary 01 11 1 ∗ (−1), (−1) ∗ 1 1⊙ 0, 0⊙ 1 0

SN 1 0 (−1) ∗ (−1) 0⊙ 0 1

the Sign operation, whose output is the input of the next
layer. The multiplication operation can be achieved by a
column of the XNOR gates, the basic logic cell in SFQ
circuits. After data goes through the XNOR column, its
number reduces by half, considerably shrinking the scale
of circuits in hardware implementation.

The popcount function counts the number of ones in the
output of the XNOR column to implement the accumulation
operation. Assume the input number of bits for APC is N ,
an input with M bits (M < N ) and N1 ones needs to ap-
pend additional N−M

2 ones to obtain the correct cumulative
result sum.

sum = 2 ∗N1 −M = 2(N1 +
N −M

2
)−N (9)

Since the data is presented by the SN method, µµµ needs to
be processed by Equation 10, whose result is compared with
the output of APC (explained in the following subsection)
to obtain the result of the neural processing unit. |xxx| is the
size of the input xxx of the current layer. Finally, passing
through multiple hidden layers, the output of the output
layer can be obtained. The index of the maximum value
of the output layer is the predicted output of the neural
network for the input. The complete inference process is
presented in Algorithm 2.

uuu′ =
(uuu+ |xxx|)

2
(10)

3.2 SFQ-based APC
As a vital component in the neural processing unit, the
implementation of the popcount function has a considerable

Algorithm 2: Proposed BNN Inference Process
Input: the number of layers L, a input vector xxx,

trained binary weights wwwb, and a trained
threshold vector µµµ

Output: the MLP output aaaL
1 xxxb = (Sign(xxx) + 1) /2
2 wwwb =

(
Sign(wwwb) + 1

)
/2

3 1. First layer:
4 aaa1 = APC

(
XNOR

(
wwwb

1,xxx
b
))

5 aaab1 =
(
Sign

(
aaa1 −

(
µµµ1 +

∣∣xxxb
∣∣) /2)+ 1

)
/2

6 2. Remaining hidden layers:
7 for i=2 to L do
8 aaai = APC

(
XNOR

(
wwwb

i , aaa
b
i−1

))
9 aaabi =

(
Sign

(
aaai −

(
µµµi +

∣∣aaabi−1

∣∣) /2)+ 1
)
/2

10 3. Output layer:
11 aaaL = APC

(
XNOR

(
wwwb

L, aaa
b
L−1

))
−
(
µµµL +

∣∣aaabL−1

∣∣) /2
12 return aaaL;
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Fig. 8. Example of a 16-4 APC converting a 16-bit stochastic number
into a 4-bit binary number.

impact on the performance of the neural network accelera-
tor. In this section, we focus on the implementation of the
popcount function in SFQ logic.

In stochastic computing, the accumulative parallel
counter is used to convert a stochastic number to a binary
number [37]. Fig. 8 shows an example of APC generating
a 4-bit binary number from a 16-bit stochastic number [37].
The parallel counter (PC) in an APC uses some full adders
(FAs) to generate 20 ∼ 2m−1-weighted bits (a binary num-
ber) from a stream of 20-weighted input bits (a stochastic
number), where m is the number of bits of the binary num-
ber. The first layer of the APC in Fig. 8 is an approximation
unit (AU) composed of OR-AND gates pairs. Converting a
stochastic number into a binary number requires counting
the number of ones in the random bit stream. As a result,
the SFQ-based APC is proposed to implement the popcount
function.

3.2.1 SFQ-based APC design

The proposed APC-based popcount function is imple-
mented using the elementary logic cells in SFQ circuits.
Additional DFFs are inserted in the circuit, thereby fulfilling
the requirement of path balancing. The path-balanced 16-4
RSFQ APC that counting the number of ones in the input
bit stream is shown in Fig. 9. It consists of a superconduct-
ing approximation unit (SFQ AU) and a superconducting
accurate PC (SFQ PC). The proposed SFQ APC exploits 1-
layer AU, which consists of superconducting OR-AND gates
pairs, which can halve the data size, further reducing the
size of subsequent circuits, as shown in Fig. 9.

The SFQ PC consists of a cascade of full adders. How-
ever, adapting the full adder design directly from CMOS
logic to SFQ logic using functionally equivalent gates is
inefficient in that it involves a significant area overhead (a
FA needs at least five gates in CMOS). Therefore, in this
paper, referring to the design idea in [30], an SFQ-based
specific full adder is implemented where two CB2 in the
original full adder are merged into one CB3 gate. Note that,
as explained in Section 2.1.3, the SFQ circuits need to be
path-balanced. Thus, 7 path-balanced DFFs are inserted into
the SFQ PC.

SFQAU SFQ PC
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n5
n4

n7
n6

n9
n8

n11
n10

n13
n12

n15
n14

DFF

DFF DFF

DFF

DFF

DFF

DFF

A

B

C

SPL

w2

CB3

t

out

su
mT1rd

data

A

B

C

clk

sumcarry

w1

out
clk
DFF

carry

sum

Fig. 9. Path-balanced 16-4 SFQ APC with T1-based 1-bit full adders
counting the number of ones in the input bit stream.

Specifically, the SFQ FA is realized using four gates: a T1
flip flop, a CB3 gate, a DFF, and an SPL gate, as shown in
Fig. 9. For clarity reasons, the clock port in the FA’s symbol
is omitted. Timing corresponding to the correct operation of
the SFQ FA in the presence of different input sets, i.e., 111,
101, and 010 are shown in Fig. 10. It can be seen that this FA
can output sum and carry every cycle.

3.2.2 Analysis for Pipeline Stage in SFQ APC
In order to clarify how many pipeline stages are required by
the proposed SFQ APC, the number of FAs are calculated.
Suppose that N-input bits become V -output bits (N = 2V )
and f(V ) are the number of FAs. Then,

f(V ) =
N

2
− V =

N

2
− log2N (11)

The design of the SFQ PC is based on a divide-and-
conquer strategy: given two PCs each with l inputs, a
(2l + 1)-input PC is obtained using a ripple-carry adder of
length ⌊log2l⌋+1 [38]. Similarly, two such (2l+1)-input PCs
can be combined with a (⌊log2l⌋+ 2)-bit ripple-carry adder
to produce a (4l + 3)-input PC. This procedure is repeated
until a PC whose size is greater than or equal to N − 1 is
obtained.

For example, only one full adder is needed when l = 3,
so the number of pipeline stages is one. When l = 7 the
required number of ripple-carry adders is ⌊log23⌋ + 1 = 2,
so a total of 3 stages are required. Similarly, when l = 15,
a total number of 3 + ⌊log27⌋ + 1 = 6 stages are required.
To generalize, for a l-bit input PC, the required number of
stages s(l) is:

s(l) = 1 + 2 + 3 + ...+ (⌊log2(2V−1 − 1)⌋+ 1)

= 1 + 2 + 3 + ...+ ⌊log2(l + 1− 2)⌋
(12)

Note that l = 2V − 1. In the proposed N -input SFQ
APC, N/2 superconducting OR-AND gates pairs and f(V )
FAs are exploited, where N = 2V . By replacing the term
(l + 1) in Equation (12) with N/2, the number of pipeline
stages S(N) in the entire APC can be obtained as follows.

S(N) = 1 + 2 + 3 + ...+ (⌊log2(N/2− 2)⌋) + 1

=
⌊log2(N − 4)⌋ ∗ (⌊log2(N − 4)⌋ − 1)

2
+ 1

(13)

The last term in Equation 13 is added due to the 1-layer
AU consisting of superconducting OR-AND gates pairs.
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of inputs, 111, 101, and 010 and corresponding outputs 11, 10, and 01
are displayed.

3.2.3 Analysis for Area in SFQ APC
The area of an SFQ circuit is denoted by JJ-complexity.
The JJ-complexity represents the number of JJs required to
design a logic block [16]. In this paper, we use JJ-complexity
as a key figure of merit, similar to prior superconducting
system designs [39], [40]. Although a logic block consists
of logic gates and transmission lines, the JJ-complexity
of system-level is evaluated only by computing gate JJ-
complexity. Since Passive Transmission Line (PTL) is widely
used in the routing of SFQ circuits, whose interconnect JJ-
complexity can be negligible.

The gate JJ-complexity JJG is derived by adding SFQ
AU JJ-complexity JJAU , the full adder JJ-complexity JJFA,
and path-balanced DFF JJ-complexity JJPB DFF as shown
in Equation 14.

JJG = JJAU + JJFA + JJPB DFF (14)

The computation of JJAU and JJFA are trivial given
the JJ-complexity of each SFQ gate, as shown in Table 4. As
explained in Section 3.2.2, since the design of the SFQ APC
is based on a divide-and-conquer strategy, the inserted DFF
count d(l) for the l-input SFQ PC can be calculated as

d(l) = 2 ∗ d
(
2V−1 − 1

)
+ s

(
2V−1 − 1

)
+ 3 ∗

(
1 + 2 + 3 + ...+ ⌊log2(2V−1 − 1)⌋

) (15)

After substituting Equation 12 into Equation 15, d(l) is
given by

d(l) = 2 ∗ d ((l − 1)/2)

+ (⌊log2(l − 3)⌋ ∗ (⌊log2(l − 3)⌋ − 1))/2

+ 3 ∗ (⌊log2(l − 1)⌋ ∗ (⌊log2(l − 1)⌋ − 1))/2

(16)

Then, the number of DFFs D(N) in the entire APC can
be obtained iteratively as follows.

D(N) = 2 ∗D (N/2)− S (N/2) + S(N)+

3 ∗ (⌊log2(N − 2)⌋ − 1) ∗ ⌊log2(N − 2)⌋/2
(17)

Thus, according to the JJ-complexity of each gate, as
listed in Table 4, the JJ-complexity JJG can be given by:

JJG = JJAU + JJFA + JJPB DFF

=
N

4
∗ 27 +

(
N

2
− log2N

)
∗ 28 +D(N) ∗ 7

(18)

Fig. 11 shows the layout of the proposed SFQ-based 16-
4 APC circuit, which consists of 4 pipeline stages, 7 path-
balanced DFFs, and 269 JJs for logic cells.

Stage 1 Stage 2 Stage 3 Stage 4 

Full adder 

Fig. 11. The layout of the 16-4 SFQ APC design.

4 EXPERIENTIAL RESULTS

The experiment uses the MNIST [24] dataset to evalu-
ate the proposed RSFQ-based BNN architecture in sev-
eral aspects, including application-level performance and
hardware-level performance. The MNIST is an image classi-
fication benchmark dataset, consisting of a train set with 60K
size and a test set of 10K size, each of which is a 28*28 gray-
scale image representing a digit ranging between 0 and 9. In
this section, the experimental setup is first described, then
JBNN is evaluated on performance and power efficiency.

4.1 Experimental setup

As shown in Fig. 12, the structure of the BNN in this work
is similar to the MLP proposed by Courbariaux et al. in [34],
consisting of 3 hidden layers of 4096 binary units and an L2-
SVM output layer of 10 binary units. But in the train process,
the parameters γ and β of the batch normalization shown
in Equation 19 are not trained and are set to γ = 1 and β =
0, respectively. Meanwhile, the output layer is replaced by
the softmax function. In the reference process, the weights
www and neuron activations xxx first need to be binarized by
Equation 7, making all operations of the whole network bit-
wise to avoid the extra computing cost caused by the first
layer. After that, the binarized weights and activations are
fed into the neural processing unit.

y =
x− µ√
σ2 + ϵ

γ + β (19)

TABLE 4
JJ-complexity of SFQ cells.

Cell type JJ-complexity Static power
@50GHz (nW)

Dynamic power
@50GHz (nW)

DFF1 7 1815 142
SPL1 4 2093 108.6
CB32 8 3789 292.5
T13 9 988 174

AND1 15 2805 289
NOT1 9 2259 183
XOR1 11 2402 232
OR1 12 2980 265

XNOR1 18 4215 416
1 The data is from the open-source MIT-LL SFQ library [41].
2 The static and dynamic power of CB3 [26] is evaluated as 1.5

times that of MERGE [41], respectively.
3 The static and dynamic power of T1 [42] is calculated according

to the calculation method of the library [41].
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Fig. 12. Overview of the BNN network architecture.

The application-level performance of JBNN is evaluated
by testing the accuracy of the proposed BNN inference
framework on the MNIST dataset. To comprehensively eval-
uate the hardware-level performance of JBNN, we designed
three different implementations of the BNN inference accel-
erator for comparison: the CMOS-based synchronous design
at 300K, the CMOS-based asynchronous design at 300K, and
the cryogenic CMOS-based design at 77K. The three imple-
mentations, called SyncBNN@300K , AsyncBNN@300K ,
and CryoBNN@77K , adopt the same architecture in [43].
This reference architecture is made of a 32 × 32 processing
element (PE) array, composed of a 2 kbits memory array that
store weights, 32 XNOR logic gates that perform the XNOR
between the 32 bits weights and the 32 bits received data, a
32 bits to 5 bits popcount module compound of basic tree
adders. However, unlike PE in [43], where the weights are
stored in the spin torque magnetoresistive random access
memory (MRAM), we used the static random access mem-
ory (SRAM) to store weights.

In pursuit of ultra-high computing speed, the paper
focuses on RSFQ logic and ERSFQ logic to realize the hard-
ware implementation of JBNN. As described in Section 2.1.4,
the only difference between RSFQ logic and ERSFQ logic is
how to supply the DC bias current. It is assumed that the
timing parameters and area of ERSFQ logic gates are the
same as those of RSFQ logic. Meanwhile, according to the
bias current of RSFQ logic design and the power model of
ERSFQ [32], we estimate the dynamic and static power of
ERSFQ logic gates to be twice that of RSFQ logic and zero,
respectively.

4.2 Performance evaluation
This section first presents the accuracy loss obtained by
the proposed new binarized representation of weights and
activations. Then, hardware-level performance comparisons
of JBNN with three different CMOS-based implementations
are discussed.

4.2.1 Application-level accuracy
Without retraining on the validation, the test error associ-
ated with the best validation error rate after 100 epochs
is 1.63%, which is the result of Algorithm 1. Due to the
accuracy loss in the binarization of weights and activation
variables, the test error using the inference process in Algo-
rithm 2 is 2.11%.

Besides, another case with not considering µµµ in the
reference process is also evaluated. In this way, the neural

processing unit only consists of an XNOR column and an
APC whose highest output bit is used as the output of the
neural processing unit, further saving circuit cost. In this
case, the test errors of the inference process using Algo-
rithm 1 and Algorithm 2 are 9.94% and 10.96%, respectively.

4.2.2 Hardware-level performance
The hardware-level performance of JBNN is compared with
three different CMOS-based implementations of the BNN
inference accelerator with the same architecture in [43].
These implementations include:

• SyncBNN@300K . A digital ASIC version with the
square-shaped 32 × 32 process elements (PEs) array
is implemented by standard integrated circuit design
tools with the 12 nm TSMC CMOS process. The high-
est operating frequency reported by the Synopsys
Design Compiler tool is 1.2 GHz.

• AsyncBNN@300K . Although the synchronous de-
sign paradigm is ubiquitous in the electronic design
industry and has many advantages, it is under-
mined by the increasing complexity of VLSI systems
and the ever-growing demand for higher perfor-
mance. However, in an asynchronous circuit, the
components evolve autonomously and operate on an
“on-demand” basis, indicating a potential for lower
power dissipation and better timing performance.
Thus, for a fair comparison, we also designed the PE
to be asynchronous, where the popcount function is
implemented in an asynchronous fashion. The rising
edge of the output of the previous popcount bit
triggers the clock input of its next popcount bit.

• CryoBNN@77K . Cryo-CMOS is the CMOS design
that runs at low temperatures (e.g., 77K) for im-
proved performance and power efficiency due to the
reduced leakage power and wire resistance at cryo-
genic temperature. Many proposals have focused on
77K-based cryogenic computing, such as 77K-based
DRAM devices [44], processors [45], and quantum
control systems [46]. Although some research has
been conducted to create a 77K-based CMOS stan-
dard cell library [47], the raw data of the library is not
available for cryo-CMOS digital circuit design. Thus,
to implement the CryoBNN design running at 77K,
we first simulated the elementary cells using Hspice
and the 16 nm PTM models [48] operating at different
temperatures. Then the critical path delay and power
consumption for the PE running at 77K are calculated
based on the simulated data of the elementary cells.

JBNN consists of 4096 XNOR gates, the APC, and a
comparator (CMP for short). Table 5 shows the number of
pipeline stages and JJs of these JBNN components. Under
this configuration, APC’s input is 4096 bits and has 56
pipeline stages. Note that in CMOS-based design, zero skew
clocking is used, that all registers update their values every
clock cycle, so the number of stages is 1.

The performance is calculated by the frame per second
(fps) normalized to the CMOS-based implementations. We
estimate fps by multiplying the size of the PE array by the
frequency and dividing by the number of total accumula-
tions in the whole network. Since the CMOS-based design
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has a PE array scale of 32 × 32, the images processed per
second can be obtained, which is 3.34 × 104. Considering
that the utilization rate of PE is usually less than 100%, as-
suming a 90% PE utilization rate, the effective performance
of SyncBNN , AsyncBNN , and CryoBNN are 3.00×104,
3.00×104, and 5.61×104, respectively. Three hidden layers
and one output layer in the network are performed with
a JBNN with 8192 inputs (4096 activations, 4096 weights),
and it requires 12570 cycles to process one image. Therefore,
the number of images processed per second is 3.98 × 106.
In other words, the performance of JBNN is 132 times and
70.92 times higher than that of SyncBNN and CryoBNN ,
respectively. This speed-up in performance is mainly thanks
to the much higher frequency of the SFQ process and the
simple pipeline architecture of JBNN with no feedback loop.

Moreover, our proposed method scales well because the
SFQ-based APC used to calculate the popcount is relatively
hardware-friendly and area-efficient. For example, as shown
in Fig. 13, when the number of bits input to the neural pro-
cessing unit is increased to 256, the number of JJs required
by the proposed method is less than 10,000. Even when the
integration scale is limited to 100,000 JJ, the number of input
bits can be enlarged to 4096. In addition, since the power

TABLE 5
The number of pipeline stages and JJs of JBNN components.

Metrics
Components APC CMP APC+CMP JBNN CMOS-based BNN

#stages 56 12 68 69 1
#JJs 140509 1258 141767 215495 /

of ERSFQ is roughly proportional to the number of JJs, it
follows a similar trend as JJ’s count, as shown in Fig. 13.
We also study the scaling of the power of SyncBNN ,
AsyncBNN , and CryoBNN with the number of bits input.
Power is found to increase by about two times for every
doubling of the PE array size.

4.3 Power efficiency evaluation
The performance and power data of SyncBNN and
AsyncBNN are reported by Synopsys Design Compiler,
whereas the data of CryoBNN is calculated by applying
the delay and power data of 77K-based elementary cells
to the synthesized netlist of SyncBNN . Two different SFQ
device technologies, RSFQ and ERSFQ technology are em-
ployed to evaluate JBNN’s power-efficiency. The power con-
sumption and performance per Watt (i.e., power-efficiency)
for JBNN and the CMOS-based designs are shown in Ta-
ble 6.

With RSFQ device technology, JBNN consumes 60.57
mW, and ERSFQ-JBNN consumes only 9.78 mW because
there is no static power consumption in ERSFQ technology.
Due to the simple computational logic in BNN, CryoBNN
dissipates the minimal power of 12.03 mW in its operation.
Assuming a 9.65x cooling overhead for 77K as in [45], its
power efficiency (fps per Watt) is 4.38 × 105. Our evalua-
tion observed a 929.18x and 233x improvement in power-
efficiency with ERSFQ technology over CryoBNN and
AsyncBNN , respectively, providing free cooling. If 300x
cooling cost is considered, the normalized power efficiency
of ERSFQ-JBNN becomes 1.35 × 106, which is 3.09x higher
than CryoBNN . The energy-efficient version of the SFQ
technology, such as ERSFQ circuits, is more suitable for
achieving high energy efficiency since they eliminate the
static power consumption and retain the high-frequency
characteristics of the RSFQ circuits.

5 CONCLUSION

Superconducting technology is a highly promising solu-
tion in post-Moore’s era. However, the potential of SFQ
computing has not yet been fully realized because of the
fabrication, timing, and memory limitations. This paper ad-
dresses the challenges as follows. First, a new representation
is proposed for the binarization of weights and activation
variables. With it, in the inference process of BNN, the
first layer can also utilize binary operations with binarized
inputs while maintaining acceptable accuracy, about 97.89%.

TABLE 6
Power efficiency comparison between the CMOS-based BNN implementations and JBNN using RSFQ and ERSFQ logic.

Networks
Metrics Cooling Frequency

(GHz)
Static Power
(mW)

Dynamic Power
(mW)

Total Power
(mW)

Power Efficiency
(fps/W)

RSFQ-JBNN 0 50 55.67 4.89 60.57 6.57× 107

RSFQ-JBNN 300x 50 55.67 4.89 60.57 2.18× 105

ERSFQ-JBNN 0 50 0 9.78 9.78 4.07× 108

ERSFQ-JBNN 300x 50 0 9.78 9.78 1.35× 106

SyncBNN@300K 0 1.2 125.00× 10−6 30.24 30.24 9.94× 105

AsyncBNN@300K 0 1.2 884.43× 10−6 17.19 17.19 1.75× 106

CryoBNN@77K 9.65x 2.24 26.42× 10−6 12.03 12.03 4.38× 105
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Next, the hardware design of the binarized neural net-
work is first proposed using superconducting single flux
quantum logic, called JBNN, which is an area-efficient and
purely pipeline-based neural processing unit without feed-
back loops. In JBNN, an SFQ-based accumulative parallel
counter is designed, where the full adder is realized by
the T1 cell, an SFQ elementary logic cell. Our evaluation
shows that the proposed design outperforms a cryogenic
CMOS-based BNN accelerator design running at 77K by
70.92 times in performance when running BNN workloads.
With the cooling cost considered, JBNN’s power efficiency
is 3.09x higher than the cryogenic BNN design. However,
with free cooling cost assumed, JBNN’s performance per
watt becomes significantly higher than the cryogenic design
by 929.18 times.
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