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Abstract—Logic rewriting serves as a robust optimization technique
that enhances Boolean networks by substituting small segments with
more effective implementations. The incorporation of don’t cares in
this process often yields superior optimization results. Nevertheless, the
calculation of don’t cares within a Boolean network can be resource-
intensive. Therefore, it is crucial to develop effective strategies that
mitigate the computational costs associated with don’t cares while
simultaneously facilitating the exploration of improved optimization
outcomes. To address these challenges, this paper proposes DCLOG,
a don’t cares-based logic optimization framework, to efficiently and
effectively optimize a given Boolean network. DCLOG leverages a pre-
trained graph neural network model to filter out cuts without don’t cares
and then performs an incremental window simulation to calculate don’t
cares for each cut. Experimental results demonstrate the effectiveness and
efficiency of DCLOG on large Boolean networks, specifically average size
reductions of 15.64% and 1.44% while requiring less than 23.84% and
44.70% of the average runtime compared with state-of-the-art methods
for the majority-inverter graph (MIG), respectively.

Index Terms—Ilogic optimization, don’t cares, graph neural network,
majority-inverter graph

1. INTRODUCTION

Logic optimization [1], [2] is a crucial step in realizing efficient
digital systems. Among various logic optimization techniques, logic
rewriting stands out for its efficiency and effectiveness in optimizing
a Boolean network. Given an input Boolean network, logic rewriting
can streamline the logic structure, resulting in less depth and size
while maintaining the original function. Various methods exist for
logic rewriting. Notable approaches include DAG-aware rewriting [3],
mapping-based rewriting [4], and cut-based rewriting [5]. Among
them, a key component is SAT-based exact synthesis [6], which
finds the most optimized substitution structure for a given Boolean
network. Typically, optimal structures are pre-computed and saved in
a database due to the computational complexity of exact synthesis.
Hence, SAT-based exact synthesis methods are extremely popular due
to their well-optimized results.

On the other hand, don’t cares play a crucial role in optimizing
logic networks, which can simplify Boolean expressions by allowing
designers to freely choose output values for specific input patterns
[7]. Generally, don’t cares are incorporated with exact synthesis
and Boolean matching, providing flexibility in selecting replacement
candidates with higher optimization potential. The state-of-the-art
logic optimization methods have utilized the advantageous features
of don’t cares, such as logic resubstitution [8] and logic rewriting [5].
These methods construct cuts for each gate through cut enumeration
and then iteratively perform the Boolean function retrieval in the
database by Boolean matching [9] for a better implementation for
each cut. Due to the application of don’t cares, the Boolean function
retrieval can find more implementations that contain given simplified
Boolean functions from a database, which provides a potential for
exploring its optimal implementation. These state-of-the-art methods
can significantly optimize a given Boolean network compared with
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logic rewriting without don’t cares, especially for the majority-
inverter graphs (MIGs) [10].

Although logic rewriting methods with don’t cares have achieved
significant success in optimizing the size and depth of Boolean
networks, they require substantial computational costs. Taking con-
trollability don’t cares (CDCs) as an example, its calculation requires
the determination of the transitive fanin of nodes in a given cut and
then a functional simulation from these transitive fanin to all nodes
in the cut. In fact, this process is very time-consuming. Furthermore,
Boolean networks typically contain a large number of nodes, each
with multiple cuts, which further increases the computational costs
of don’t cares. In our cases, the calculation [10] of don’t cares nearly
increased 6 x runtime of the logic rewriting process on large Boolean
networks, underscoring the need for strategies to reduce computation
time in don’t care-based optimization.

To address this issue, we propose DCLOG, an efficient don’t care-
based logic optimization framework. While maintaining the superi-
ority of the resulting Boolean network in size and depth, DCLOG
employs two main strategies to minimize the computation cost. First,
the calculation occurrence of don’t care will be reduced by filtering
potential cuts without don’t cares. DCLOG uses pre-training graph
neural networks to predict the output probability of each node within
a given Boolean network, subsequently utilizing these probabilities
to filter cuts. Then, the calculation cost of don’t care will be reduced
by dynamic simulation. Due to high computational demands, the
calculation of don’t cares is usually confined to a local Boolean
network, where a Boolean simulation is required for exact don’t care
results. DCLOG uses the leaves of cuts as boundaries to facilitate
incremental simulation of the local network, thereby significantly
reducing the overall simulation costs. We evaluate our DCLOG on
large Boolean networks in the EPFL and IWLS 2005 benchmarks to
demonstrate its effectiveness and efficiency.

Overall, the contributions of this paper are as follows:

« We propose an efficient don’t care-based logic rewriting frame-

work to achieve superior Boolean logic optimization.

o« We develop an effective cut-filtering method utilizing a pre-
trained graph neural network model, efficiently excluding cuts
without don’t cares.

o We introduce an incremental simulation method designed to
significantly reduce unnecessary simulation overhead.

o Experimental results on large-scale EPFL and IWLS 2005
benchmarks show that DCLOG outperforms state-of-the-art
logic rewriting and resubstitution methods in runtime and size
reduction for MIG optimization.

II. BACKGROUND
A. Don’t Cares
In digital logic, don’t cares of a Boolean function refer to input
patterns for which the function’s output is irrelevant or that never
occur. This flexibility allows certain inputs to be assigned any



value without impacting the circuit’s primary outputs, enabling the
transformation of a Boolean function f into an equivalent function
f/ without altering its intended behavior. Don’t cares facilitate more
efficient Boolean matching by offering added flexibility.

CDCs, as a type of don’t cares, represent input patterns that never
occur in a Boolean logic network. Considering that CDCs possess
relatively acceptable computational complexity and effectiveness for
logic optimization among various types of don’t cares, this paper
selects CDCs for logic rewriting with don’t cares. Given the Boolean
function f with its inputs x = (z1,z2,...,Z,) and a set of
additional variables v, where vNx = () and v sources from transitive
fanin of nodes in x, the CDCs of f are defined as follows:

CDC(f) = {x | Cs(x) = 1}, ey
where the controllability condition C'y(x) is given by

and fr,(v,x) is the Boolean function describing the behavior of x;
in terms of the variables v U x.

We take the Boolean function f = (dAb)V (bAc)V (dAc) as a
running example. The Boolean function f’s inputs are x = {b, ¢, d},
where d’s corresponding Boolean function fy = a A b, and v =
{a}. According to Equation (2), Cy(x) = Va,(b@b) V (c®c) V
(d® (a AD)) =Va,d® (a Ab) = dA(—b). Hence, the set of CDCs
for fis {(b =0,c=0,d =1),(b=0,c=1,d = 1)}. Utilizing
these don’t cares, the Boolean function f = (dAb)V (bAc)V (dAc)
can be simplified in a more compact form f =dV (b A ¢).

B. Logic Rewriting with Don’t Cares

Several established logic rewriting frameworks have achieved re-
markable optimization results. Calvino et al. proposed map-based
logic optimization techniques [4], while Mishchenko et al. introduced
DAG-aware logic rewriting [3]. Additionally, Lee et al. developed a
heuristic logic resubstitution method [8]. More recently, Calvino et
al. presented a Boolean matching approach utilizing don’t cares [5],
which achieves a significant reduction in circuit size compared with
other logic rewriting strategies.

In general, logic rewriting with don’t cares involves three main
steps: (i) partitioning a Boolean network into subsets by constructing
multiple cut sets for each gate, (ii) calculating don’t cares for each
cut, and (iii) performing Boolean matching with these don’t cares.
However, this approach faces two significant challenges: @ The
calculation of don’t cares for each cut is computationally expensive;
® Many cuts in Boolean matching do not actually contain don’t cares,
making these calculations often redundant.

To address these challenges, our proposed method introduces a
novel strategy to selectively identify cuts that have a high probability
of possessing don’t cares. Furthermore, since only partial simulation
results are typically required for don’t care calculation, we optimize
the simulation process to improve efficiency.

C. Circuit Representation Learning

Circuit representation has been widely explored in the deep learning
community, with various advanced graph representation methods,
such as those in [11]-[14], providing valuable node embeddings for
our research. The quality of these embeddings heavily depends on the
capacity of the embedding model, which in turn determines prediction
accuracy, particularly in identifying don’t-care conditions. Significant
efforts have been made to improve model capacity. For instance,
DeepGate [13] uses logic-1 probability supervision for circuit repre-
sentation, while its successor, DeepGate2 [14], distinguishes between
structural and functional similarities during learning. However, their
restrictive loss functions struggle to efficiently capture the logic net-
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Fig. 1. The calculation of don’t cares via window simulation, where
a, b, and ¢ are window inputs, and d, e, f, and g are AND gates.

work’s structure, limiting prediction accuracy. In contrast, FGNN [11]
leverages contrastive learning to model circuit functionalities. Its
enhanced version, FGNN2 [12], further improves performance by
introducing a specialized contrastive loss to quantify functional
differences and an order-invariant encoding scheme. This enables
highly accurate simulation results within seconds via inference from
a pre-trained model. Given these advantages, we adopt FGNN2 for
node embedding extraction in this work.

III. PROBLEM FORMULATION

A. Terminology

A Boolean function is a mapping from a n-dimensional Boolean
space into a l-dimensional one: {0,1}" — {0,1}. A Boolean
function can be instantiated as a Boolean network, a directed acyclic
graph N(V, E), where each node v € V' corresponds to a logic gate,
and each directed edge (u,v) € E is a wire connecting node v with
node v. Moreover, for a node v € V, TFI(v) is the set of its transitive
fan-in. For any node u € TFI(v), there is a path from u to v.

The simulation result for a gate in the Boolean network is a
sequence of Os and 1s, representing the output under all possible
input patterns. For a node v, we defined pattern s, as the sequence
of Os and 1s under the simulation. |s,| represents the frequency of
I’s in the simulation result sequence. In Fig. 1, the simulation pattern
for node d is sq = 00000011, and |sq| = 0.25.

Definition 1 (Cut). A cut C in a Boolean network N is defined as
a pair (r,C;), where r is its root node, C; represents the set of its
leaves, and any path from a primary input (PI) of N to v must pass
through at least one node in C;.

The root node r serves as the output of the cut, and each leaf | € C;
serves as an input of the cut. So, the Boolean function corresponding
to the cut C can be represented as f(C;). K = |C;| is the cut size.
Notably, for a node v € V, it may have multiple cuts, and the set
of its cuts is denoted as C. In Fig. 1, node f has a cut C with
C; = {b, ¢, d}. Similarly, a window W is defined analogously to a cut
but may contain multiple outputs. JV; denotes the leaves of a window,
and L = |W,| is the window size. Besides, W also represents the
set of all nodes within a window, containing root nodes and their
multi-level bounded transitive fanin/fanout nodes. In Fig. 1, the blue
trapezoid represents a window W with leaves W, = {a, b, c}.

Definition 2 (Containment). The containment relationship exists
between a cut C and a window W if C and W satisfy C; ¢ Wi NC; C
W. That is, cut C is contained in window WW.

Definition 3 (Reconvergence). In a Boolean network, a path is a
finite sequence of connected nodes, with the start node vs and the
end node vi. Two paths are considered reconvergent if they start at
the same node vs and end at the same node v, respectively.

In Fig. 1, the paths b — d — e and b — e are reconvergent,
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where the diamond-shaped reconvergent structure wrapped in a red
dotted diamond is essential for the reconvergent path. If a window
W contains reconvergent paths, we call it a reconvergent window
[15]. Reconvergent paths are crucial for identifying don’t cares [15].
Tree-like (non-reconvergent) structures do not contain don’t cares in
the local space of the node, meaning don’t cares may not provide
further optimization benefits for such structures [16].

Definition 4 (NPN-equivalence). Two Boolean functions
f(z1,...,zn) and g(z1,...,xs) are considered N'PN -equivalent
if g can be derived from f through a combination of the following
transformations: input inversion N; (replacing x; with —x;), input
permutation P; (swapping x; and x;), and output inversion N,
(replacing f with —f). Under these transformations, f and g are
Boolean equivalent [9].

For n inputs, there are 22" possible Boolean functions. These
functions can be grouped into significantly fewer N'PN classes.
Specifically, the number of NPN classes for n-input Boolean
functions is {14, 222, 616126} for n = 3, 4, and 5, respectively.

B. Problem Formulation
This paper focuses on how to optimize Boolean networks more
efficiently through don’t cares. Given an input Boolean network,
the objective is to minimize its size and depth while maintaining
functionality. The problem is formulated as:
o Input: A given Boolean network N(V, E).
« Output: An optimized Boolean network N'(V', E’).
« Constraints:
1) Cut size limitation: VC, |C;| < K.
2) Window size limitation: YW, [W,| < L.
3) The logic function stays unchanged after optimization.
Constraints 1 and 2 ensure both the efficiency and feasibility of
logic rewriting.
« Goal: Minimize the network’s size |V’| and depth.

IV. DCLOG

Currently, the state-of-the-art logic rewriting techniques primarily
combine don’t cares with Boolean matching to discover more poten-
tial alternative structures. During this process, the calculation of don’t
cares for a cut C usually employs the window simulation approach
and mainly consists of two steps: (i) constructing a reconvergent
window W such that W contains C, followed by simulating this
window from its leaves to roots, and (ii) analyzing the simulation
results to identify missing input patterns in C;, which constitute
the don’t cares for cut C. However, we have identified two key
observations: @ only a small portion of the simulation results is
necessary for calculating don’t cares, rendering many of window
simulation results superfluous and time-consuming; and @ most cuts
do not contain don’t cares, making the don’t care calculation for these
cuts inefficient and unnecessary.

In light of these discoveries, this section proposes a highly efficient
logic rewriting framework with don’t cares, whose flow is shown in
Fig. 2. Initially, preparatory tasks include the construction of an exact
database for Boolean matching and the training of a node output
prediction model. The exact database is enhanced with additional
don’t cares information and is organized by NPA classes, each
associated with don’t cares [5], as detailed in Section IV-D. The node
output prediction model uses the node embedding generated by the
FGNN2 model as input to predict the probability of a node outputting
logic ‘1’, as detailed in Section IV-C. Subsequently, the process of
logic rewriting for a given Boolean network proceeds as Fig. 2.

A. Don’t Care Calculation and Incremental Simulation

We first detail how DCLOG calculates don’t cares of a cut C with
the Boolean function f(C;). First, according to Equation (1), the
calculation of CDCs of cut C requires additional transitive fanin v.
Due to the universal quantification about v required in Equation (2),
all output patterns of each node in C; are required. Due to high
computational costs, it’s impractical to obtain the global output
patterns of each node in terms of the primary inputs of the Boolean
network. So, a L-input reconvergent window W is constructed for
the root r of cut C to limit the transitive fanin of node r. When
window W contains cut C, the leaves W, of window W can become
the additional transitive fanin v of the Boolean function f(C;),
which indicates the computability of don’t cares. So, the simulation
for window W is performed from its leaves WV, to cut leaves Ci,
thereby generating output patterns of the cut leaves C;. According to
these output patterns, CDCs are collected by identifying which input
patterns do not appear at C;. This process, known as the projection
of don’t cares, has a complexity that grows exponentially with |[WV;|.

Fig. 1 illustrates an example of the don’t care calculation, where
nodes d, e, f, and g represent the A operator. The node f has a
cut C, with its leaves C; = {b, ¢, d} marked by a purple arc. First, a
reconvergent window W with leaves W, = {a, b, ¢}, represented by
the blue trapezoid, is built from the root f, where d is contained
within W and v = {a}. Next, the simulation is performed for
window W using the input patterns of a, b, and ¢, yielding output
patterns sp, sc, and sq. The tables on the right display these
simulation results. Then, we examine the simulation results for each
cut leaf [ € C; to identify any missing input patterns, which constitute
the don’t cares for cut C. In this example, cut leaves C; lack the input
patterns {(b =0,c =0,d =1),(b = 0,c = 1,d = 1)}, which are
thus regarded as the don’t cares, i.e., dcy = {(b = 0,¢ = 0,d =
1),(b=0,c=1,d=1)}.

During the above process, the window simulation makes up one
of the heaviest workloads for the calculation of don’t cares. The
key insight is that we can bypass simulating the entire window and
instead focus solely on the simulation results of the leaves of cut
C, since the calculation of don’t cares only requires examining the
input patterns of cut C. In our Boolean network structure, each node is



assigned a serial number, and all nodes are stored in topological order
within an array. The window simulation also follows this topological
order, meaning that nodes with higher serial numbers depend on
the simulation results of nodes with lower serial numbers, while the
latter are independent of those with higher serial numbers. Hence, we
introduce the incremental simulation to reduce computational costs.
The serial number of the node simulated last is stored, and then
the simulation is performed only if the new node’s serial number is
greater than the last one. By leveraging this incremental approach, we
only focus on the output patterns of the C; within W. This method
reduces the average time by 24.03%, compared with the original
approach, which simulates the entire window.

B. Cut Filtering

Although we have achieved efficient don’t care calculations through
incremental simulation, the computational complexity of this process
remains high, particularly for large Boolean networks with many
nodes and multiple cuts associated with a single node. Notably,
cuts without don’t cares, as generated through cut enumeration and
contained in the window of its root, can account for up to 73.74%,
making it essential to filter these cuts before proceeding with don’t
care calculations. In this section, we introduce a cut-filtering method
designed to minimize unnecessary don’t care calculations for cuts.

The cut filtering of DCLOG contains the following two strategies:

1. Filtering Cuts Using Reconvergent Window. Our first strategy
aims to identify whether the computability conditions of don’t cares
are satisfied. According to Equation (2), the calculation of CDCs of
cut C requires additional transitive fanin v. Due to the limitation of
computational resources, it’s impractical to obtain the global output
patterns of each node in terms of the primary inputs of the Boolean
network. Hence, Section IV-A creates a reconvergent window for each
node to calculate its cuts’ don’t cares. That is because a reconvergent
window can provide the additional transitive fanin while enabling a
more effective capture of don’t cares than a tree-structured window.
Therefore, the computability conditions of don’t cares for a cut
C can be specified as whether the containment relationship exists
between cut C and reconvergent window W. Specifically, we enable
the don’t care calculation of cut C when cut C is contained in window

W, i.e., satisfying:
CCgWI ACLCW. 3)

Referring to the example in Fig. 1, the cut C with leaves C; =
{b,c,d} and the window W with leaves W; = {a,b,c} are built
from the same root f, respectively. Since {b,c,d} ¢ {a,b,c} and
{b,c,d} C W, the cut C is contained in W, that is, cut C satisfies
the computational conditions of CDCs.

2. Filtering Cuts Using Statistical Analysis. Our second strategy
aims to determine whether the calculation of don’t cares is necessary.
As the introduction of the reconvergent window for simulation, we
enhance the chances of identifying cuts with don’t cares. However,
the proportion of cuts that lack don’t cares remains significantly high,
even reaching up to 73.74% on certain Boolean networks. To address
this, we propose the other filtering strategy based on the following
observation. In the example in Fig. 1, we observe that the output
pattern sq of leaf d exhibits a low value of |sq] = 2/8 = 0.25,
indicating that the full range of input patterns to the cut is not
achievable. In fact, a relatively high or low value of |s;| for any
leaf | € C; strongly suggests the presence of don’t cares in C, as it
implies that C; may lack some input patterns. This insight forms the
foundation of our second cut-filtering strategy.

Specifically, assuming that output patterns of all cut leaves have
been obtained, C is identified to possess don’t cares if its leaves C;
satisfy the following condition:

A eC,lsi| >aV]si| <1—a=true, 4)
where « is a probability threshold. As « approaches O or 1, the cut
filtering becomes stricter. The application of the second strategy can
effectively filter out many cuts without don’t cares (up to 98.72%).
However, as discussed in Section IV-A, obtaining output patterns of
all cut leaves through simulation requires significant computational
costs. Hence, a node output probability prediction model with fast
inference is required to make this approach efficient.

C. Node Output Prediction

Our second cut-filtering strategy requires the output probability (i.e.,
the probability of being logic ‘1’) of each node. However, obtaining
these results using traditional circuit simulation methods is prohibitive
due to the huge computational complexity. To address this, a model
capable of efficiently inferring the output probability of each node in
a given Boolean network is essential.

The output probability of a node is inherently linked to its logical
function, underscoring the need for a functional representation of
each node as input to our predictive model. To address this, we select
FGNN?2 [12] as our circuit encoder, as detailed in Section II-C. This
choice is motivated by its high efficiency and robust capability to
capture the logical functionality of circuits through node embeddings.

In FGNN2, the initial step involves converting an input Boolean
network into a heterogeneous graph featuring a single node type and
two distinct edge types. Taking the AND-inverter graph (AIG) as an
example, each AND gate is depicted as a node, while inverters are
depicted on the edges, distinguished by the edge type as either an
inverter or a non-inverter. FGNN2 then implements an asynchronous
message-passing mechanism designed to mirror the logical compu-
tation dynamics inherent in gate-level circuits. This message-passing
approach in FGNN2 initiates by propagating node features (i.e., input
patterns) from primary inputs of the netlist. The propagation follows
a topological order, progressing level by level until it encompasses all
nodes. During this propagation, FGNN2 uses two distinct multilayer
perceptrons (MLPs) as aggregators to independently learn the logical
functions of the AND and inverter gates.

Formally, the message aggregating scheme of a node v can be
stated as follows: _

my = A" ({hy : u € P'(v)})
= o(MLP"™" ({hu|u € P*(v)}));
ho = A (m! {h, :u e P"(v)})
= o(MLP*"(f(m,, {hu : u € P"(v)}))),
where P*(v) refers to the set of predecessor nodes connected to node
v via an inverter edge, while P"(v) refers to the set of predecessor
nodes connected to node v via a non-inverter edge. The terms A%"¢
and A" represent the learnable aggregators specifically designed
for AND gates and inverters, respectively. Furthermore, MLP®"¢ and
MLP®" denote the multilayer perceptrons used in the model. The
activation function used here is o, which is a leaky-ReLU function
[17]. The function f serves as the combination function and is
implemented as the mean operator, which helps in averaging the
features or signals processed through the network.

The above method allows the functionality of each node to be
seamlessly integrated into its embedding, enhancing the model’s
ability to interpret and analyze the circuit’s behavior effectively.
An MLP model is then applied to predict the output probability
P, = MLP (h,) of a node v € V based on its embedding h.,.

(&)



Algorithm 1: DCLOG algorithm.

Input: Boolean network N(V, E), cut size K, window size L.
Output: Optimized Boolean network.
1 P < predict the output probability of each node in network V.
2 for node v € V' in topological order do

3 original <— calculate the level of node v.

4 critical <— determine if node v is on a critical path.

5 W <— construct a L-input reconvergent window for node v.

6 S+ 0, G + 0, best + {original,0}.

7 for C < enumerate K-cuts of node v do

8 de + 0.

9 if C; & W; AC; C W then

10 if Viee, (P[] > aV P[l] < (1 — «)) then

11 S < incrementally simulate the window W from W,
to C; using S.

12 dc < calculate don’t cares for cut C on window W
using S.

13 Gs < perform Boolean matching for cut C with dc and its

truth table in the exact database.

14 for G’ € Gs do

15 cur < calculate the gain from replacing C with G’.

16 if ®(critical A cur.l < best.l A cur.n > best.n)V

17 O (—critical A cur.n > best.n)V

18 ®(cur.n = best.n A cur.l < best.l) then

19 L G + G’, best <+ cur.

20 if best.n > 0V (best.n = 0 A best.l < original) then

21 N < replace C with G in network N.

22 P < update the output probabilities of added nodes.

23 return N.

D. Boolean Matching with Exact Library and Don’t Cares

After identifying a cut C with don’t cares, it is crucial to effi-
ciently retrieve an optimal replacement from the exact database
constructed via exact synthesis. This database is organized into
NPN -equivalence classes using the method described in [5]. To
enable Boolean matching with don’t cares, we extend the exact
database by incorporating don’t cares. For each N'PN class, its don’t
cares are determined by analyzing functions with lower area costs,
applying transformations, and evaluating dominance.

After obtaining the exact database, Boolean matching with don’t
cares can be performed for cut C. The process begins by converting
C’s Boolean function f(C) into a canonical form. This involves
locating the lexicographically smallest truth table within its PN
class, resulting in a class representative f. along with its associated
permutation and negation vectors. The don’t cares are then adjusted
according to the new permutation, while input and output negations
are ignored since they do not affect the don’t care conditions.

Using the adjusted don’t cares of f., potential alternative structures
Gs are accessed from the exact database. Each structure G’ € Gs
includes its don’t cares ¢, an N'PN class representative, and the
corresponding transformation information. If the don’t cares of f.
are implied by ¢, this indicates that G’ can achieve fewer nodes or a
reduced logic level. In this case, C is replaced by G’. The replacement
is performed by applying C’s previously computed permutation
and negation vectors, adjusted to align with the G”’s N'PA class
representative. This approach ensures that the replacement process
considers both the functional equivalence and the optimization po-
tential provided by the don’t cares, thereby improving the overall
quality of the circuit.

E. Workflow

The preceding sections have detailed the principal phases involved
in DCLOG. Algorithm 1 summarizes the complete algorithmic
procedure of our don’t cares-based logic optimization using pre-
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Fig. 3. Performance trade-off between size reduction and runtime
efficiency across different optimization thresholds.

training graph neural networks. The procedure systematically inte-
grates incremental simulation and cut filtering to achieve efficient
logic optimization with don’t cares.

Initially, the output probability of each node in the Boolean
network is predicted using the pre-trained model described in Sec-
tion IV-C (line 1), enabling rapid estimation of node behaviors
required for subsequent filtering. The procedure then iterates over
all nodes in topological order from primary inputs to primary
outputs (lines 2-22), thereby preserving dependency constraints and
facilitating incremental updates.

For each node v, the procedure first calculates its current level (line
3) and identifies if it is on the critical path (line 4) to guide subsequent
cut rewriting. An L-input reconvergent window is constructed for
node v (line 5) to localize the calculation of don’t cares. The K-
cuts of node v are then enumerated (lines 7-19) to identify potential
candidates for rewriting.

For each K-cut C of node v, the cut-filtering method described in
Section I'V-B is applied to determine whether C contains don’t cares
(lines 9-12). If so, the window-based don’t care calculation method
from Section IV-A is employed. Subsequently, Boolean matching is
performed in the exact database as described in Section IV-D to
identify alternative structures Gs (line 13).

For each candidate structure G’ € Gs, the gain cur from replacing
C with G’ is calculated (line 15). The gain includes two parts: {the
level of node v after replacement [, the number of reduced nodes
n}. The replacement selection considers three optimization criteria:
@ node reduction under critical path delay improvement (line 16), &
node reduction on non-critical paths (line 17), and @ level reduction
with the same number of nodes reduced (line 18). If any criterion is
satisfied, the best candidate and its gain are updated (lines 16-19).

If an improved candidate is found, the replacement is applied to the
network (line 21), and the output probabilities of newly added nodes
are updated (line 22). The algorithm terminates after processing all
nodes, returning the optimized network (line 23).

V. EXPERIMENTAL RESULTS

The proposed don’t cares-based logic rewriting framework was im-
plemented using Python and C++. The prediction model is developed
by the PyTorch deep learning framework. Besides, DCLOG employed
the mockturtle [18], an open-source logic network library, to construct
the exact library and implement Boolean matching with don’t cares.
For the evaluation, considering the efficiency and feasibility of logic
rewriting, we used large circuits from the EPFL [19] and IWLS
2005 [20] benchmarks. Given that MIG has a more complex function
and can support a more compact representation over other Boolean



TABLE I. The experimental results on MIG optimization.

Circuit Original Resubstitution [8] Rewrite [5] Ours Runtime(s)
Size Depth Size Depth Size Depth Size Depth Resubstitution [8]  Rewrite [5] Ours
div 57247 4372 53030 4338 46352 4307 45922 4366 10.71 28.66 24.55
hyp 214335 24801 199598 16717 156584 9154 156182 9155 95.32 14794  138.24
arbiter 11839 87 11711 87 11839 87 11839 87 1.18 2.98 1.80
ethernet 86726 32 85976 31 66385 31 61306 34 18.91 33.12 14.83
leon2 789647 58 786502 57 779285 62 780385 64 3445.07 381.51 15231
leon3_opt 974977 54 970964 55 952861 48 955675 50 5677.65 568.25 172.23
leon3 1088122 59 | 1083566 58 | 1014081 53 | 1002184 56 7010.14 782.32  410.01
leon3mp 652353 55 649958 47 590140 44 590002 48 1976.38 413.64  208.40
netcard 803848 40 801960 37 533652 36 525241 37 3007.48 773.25  548.87
pci_bridge32 22806 30 22461 28 17345 33 16524 33 1.96 7.02 247
vga_lcd 126708 24 126474 24 89375 24 89472 24 38.89 55.92 25.07
Ave. ratio 1 1 0.9821  0.9393 0.8397  0.9072 0.8287 0.9370 8.4587 2.0277 1

logic structures, we selected MIG for the logic rewriting task. For
parameter configuration, we set the cut size KX = 4 and the window
size L = 12. The experiments were conducted on a machine running
Ubuntu 22.04 and equipped with Intel(R) Xeon(R) Gold 6226R CPU
@ 2.90GHz, GeForce RTX 3090, and 256.0 GB of memory.

A. Node Output Prediction
As mentioned before, our node output probability predictor leverages
a pre-trained FGNN2 model as the circuit encoder. This model
then undergoes fine-tuning using the open-source DeepGate2 dataset,
which is collected by performing MIG-based logic simulations with
a large number of random patterns. The dataset is partitioned into
training, validation, and testing sets in a ratio of 7:1:2. The fine-
tuning process of the FGNN2 model entails training on the training
dataset for 100 epochs, requiring approximately 1 hour to complete.
For the efficacy assessment of our node output probability predic-
tor, we employ the R? score as the primary evaluation metric, widely
recognized for regression tasks. Notably, our node output probability
predictor achieves an impressive R? score of 0.995 on the testing
dataset, affirming its accuracy and reliability. Thanks to the model’s
high prediction accuracy, we can filter out most cuts (up to 98.72%)
lacking don’t cares, while maintaining a low error rate (as low as
5.19%) in classifying cuts without don’t cares as having them.

B. Rewriting with Don’t Cares

We compared DCLOG against two baselines: @ the state-of-the-art
logic resubstitution using don’t cares [8], and @ the state-of-the-
art exact logic rewriting with don’t cares [5]. Both baselines were
configured with the same parameters as DCLOG, and all results were
validated for functional equivalence.

The selection of the threshold in our DCLOG framework is crucial
for balancing runtime and optimization performance. Taking the
circuits hyp and leon3mp as examples, we conducted experiments
with various thresholds ranging from 0.80 to 0.95, as shown in
Fig. 3. The results indicate that a threshold of 0.84 yields an effective
trade-off between size reduction and runtime efficiency. Specifically,
the size begins to increase sharply beyond the threshold of 0.84,
while the runtime experiences a significant decrease. This suggests
that a threshold of 0.84 is a reasonable choice for achieving a
balance between size reduction and runtime efficiency. Furthermore,
the precision of cut filtering under this threshold is 77.83% for the
circuit hyp and 67.76% for the circuit 1eon3mp.

TABLE I presents the experimental results on MIG optimization.
The “Original” part shows the initial attributes of input circuits,
including “Size”, the original number of majority nodes in the circuit,
and “Depth”, the original circuit depth. The “Resubstitution” and

“Rewrite” parts represent the results of two baselines, respectively.
The “Ours” parts present the results of DCLOG with a filter threshold
a = 0.84. In these three parts, “Size” and “Depth” indicate the
node size and circuit depth after optimization. Furthermore, the
“Runtime(s)” part shows the corresponding runtime in seconds of
each method. For DCLOG, the runtime also includes circuit repre-
sentation and model inference.

Experimental results demonstrate the effectiveness and efficiency
of DCLOG, which reduces the size by 17.13% and the depth by
6.30% on average compared to the original circuit. When compared
with the state-of-the-art logic resubstitution method [8], DCLOG
achieves an average runtime reduction of 23.84% and an average size
reduction of 15.64%. In comparison with the state-of-the-art exact
logic rewriting method [5], DCLOG achieves an average runtime
reduction of 44.70% while also reducing size by an average of 1.44%.

Overall, the experimental results demonstrate that DCLOG can
effectively optimize the circuit size and depth while maintaining a low
runtime. Since our DCLOG requires additional time for the circuit
representation and model inference, it does not show an obvious
advantage in runtime for small circuits compared with the state-of-
the-art logic resubstitution method [8]. However, for large circuits,
DCLOG can achieve remarkable efficiency, delivering over a 10x
speedup. Moreover, DCLOG consistently requires less runtime than
the state-of-the-art exact logic rewriting method [5] across all test
cases, while also achieving a better size reduction.

VI. CONCLUSION

This paper presented DCLOG, an innovative framework that effi-
ciently integrates don’t cares into logic rewriting by leveraging a
pre-trained graph neural network model. Specifically, we proposed
a cut-filtering method to effectively discard cuts without don’t cares
and incorporated incremental simulation to reduce the computational
costs of don’t cares. Experimental results on large Boolean networks
for MIG optimization demonstrated that DCLOG achieved significant
computational efficiency improvements of 23.84% and 44.70% in
runtime while substantially reducing circuit size by an average of
15.64% and 1.44%, compared to state-of-the-art logic resubstitution
and rewriting methods with don’t cares, respectively.
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