CHOP: Clustered Hybrid Optimization for Logic
Synthesis with Self-Supervised Prediction

Rongliang Fu, Ran Zhang, Ziyang Zheng, Zhengyuan Shi, Yuan Pu, Junying Huang, Bei Yu, Qiang Xu,
and Tsung-Yi Ho Fellow, IEEE

Abstract—Hybrid optimization is emerging as a promising
approach for enhancing logic synthesis by combining multiple
logic optimization methods. This paper introduces CHOP, a
novel framework that leverages vertex-level feature extraction
and optimization-aware clustering to achieve significant im-
provements in the efficiency and quality of logic synthesis.
Unlike existing cluster-level approaches that follow a ‘“partition-
then-predict” paradigm, CHOP operates under a ‘“predict-then-
partition” approach where the optimization method most ap-
propriate for a given circuit vertex is determined by analyzing
its local structural and functional context. To capitalize on this
insight, CHOP extracts a subgraph centered on each vertex
and calculates its circuit cost, which serves as a vertex feature
for the subsequent circuit partitioning process. Furthermore,
we introduce a self-supervised prediction model to obtain these
vertex features efficiently. Following circuit partitioning, CHOP
determines the optimization method for each partition and
then iteratively applies these methods to derive the optimized
circuit. The experimental results from logic optimization and
LUT mapping tasks on the EPFL benchmark demonstrate the
effectiveness and efficiency of CHOP.

Index Terms—Hybrid logic optimization, circuit partitioning,
self-supervision model, logic synthesis.

I. INTRODUCTION

OGIC synthesis plays a crucial role in modern elec-

tronic design automation (EDA) [1], involving logic
optimization and technology mapping. Early efforts focused on
simplifying Boolean expressions using algebraic techniques.
As the complexity of digital circuits increased, the need for
more advanced optimization techniques led to the development
of multi-level logic optimization [2]. This approach considers
entire networks of logic gates, rather than isolated expressions,
thereby enhancing optimization efficacy. The introduction of
directed acyclic graphs (DAGs) to represent Boolean net-
works enabled more effective logic optimization by facili-
tating the exploration of different structural configurations.
Various types of graph structures, such as AND-Inverter

The research work described in this paper was conducted in the JC STEM
Lab of Intelligent Design Automation funded by The Hong Kong Jockey Club
Charities Trust and was supported in part by the Research Grants Council of
Hong Kong SAR (Grant No. CUHK14207523), and in part by the National
Natural Science Foundation of China (Grants No. 62302477).

Rongliang Fu, Ziyang Zheng, Zhengyuan Shi, Yuan Pu, Bei Yu, Qiang Xu
and Tsung-Yi Ho are with the Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, Hong Kong 999077, China.
E-mail: {rlfu, zyzheng23, zyshi, ypu, byu, qxu, tyho}@cse.cuhk.edu.hk.

Ran Zhang and Junying Huang are with the SKLP, Institute of Computing
Technology, CAS, Beijing 100190, China. E-mail: {zhangran23s, huangjun-
ying} @ict.ac.cn.

Corresponding author: huangjunying @ict.ac.cn.

.........

sum

cout

sum

cout

Fig. 1. Graph representations for the 1-bit full adder using (a) AIG
with 8 nodes and a depth of 5, (b) MIG with 3 nodes and a depth
of 2, (¢) XAG with 5 nodes and a depth of 3, and (d) XMG with 3
nodes and a depth of 2.

graphs (AIGs) [3], Majority-Inverter graphs (MIGs) [4], XOR-
AND-Inverter graphs (XAGs) [5], and XOR-Majority-Inverter
graphs (XMGs) [6], have been developed to effectively capture
different logic functions and facilitate algebraic manipulation.
For example, Fig. 1 shows the different graph representations
for the 1-bit full adder. The AIG representation requires 8
nodes and has a depth of 5, while the MIG representation
requires only 3 nodes and has a depth of 2. The XAG
representation requires 5 nodes and has a depth of 3, while
the XMG representation requires only 3 nodes and has a depth
of 2. This comparison underscores the diverse capabilities of
different graph structures in optimizing logic functions.

The introduction of these graphs has facilitated the devel-
opment of numerous logic optimization techniques, such as
rewriting [7]-[10], resynthesis [11], [12], and resubstitution
[13]-[15]. Rewriting involves optimizing the number of gates
or depth of logic circuits by rearranging or substituting specific
Boolean networks within the circuit with their equivalent
forms. Resynthesis focuses on the comprehensive reconstruc-
tion or reorganization of the original subcircuit into a new
logic structure. In contrast, resubstitution involves replacing
redundant nodes with existing ones, thereby avoiding the
introduction of new nodes. However, these methods mainly
focus on a single type of graph representation.

Due to the inherent complexity of graph structures, hybrid
optimization, a combination of these circuit graph optimization
techniques, has the potential to significantly enhance circuit
performance [16]-[19], as shown in Fig. 2. Luca et al. pro-

TABLE I. Comparison of CHOP and existing hybrid logic optimiza-
tion frameworks.

CHOP

Vertex-level
Before clustering
Hierarchical Clustering

Aspect LSOracle [17] HeLO [18]

Cluster-level
After clustering
Agglomerative

Cluster-level
After clustering
K-way Hypergraph

Prediction Level
Prediction Phase
Clustering Method

posed MixSyn [16], which combines different logic optimiza-
tion techniques to improve circuit performance. MixSyn first
performs XOR optimization for a given Boolean network, and
then directly splits the optimized Boolean network into two
parts, composed of (i) XOR nodes and (ii) remaining nodes,
respectively. Finally, it performs AND/OR optimization on the
second part, and then merges the resulting network and the
first part to obtain the final optimized Boolean network. Thus,
MixSyn merely combines XOR and AND/OR optimization
techniques, without considering the unique characteristics of
the circuit design. Neto et al. proposed LSOracle [17], which
identifies clusters within a circuit and assigns a specific
graph optimization technique to each cluster to explore a
better circuit design. Although LSOracle achieves promising
improvements in the area-delay product (ADP), it has notable
shortcomings:

« It relies on the general graph partition tool, KaHyPar [20],
to partition the circuit, without accounting for the unique
characteristics of circuit design.

« It represents Boolean functions using Karnaugh-map im-
ages and employs a traditional neural network model to
predict the optimization method of each cluster, which
may limit prediction performance on complex circuits.

Besides, Pu et al. proposed HeLO [18], a heterogeneous
DAG-based logic optimization framework that combines graph
learning and hierarchical clustering. HeLO clusters logic com-
ponents based on structural and functional similarity and uses
a graph neural network (GNN) model to generate topological-
functional embeddings for predicting the best-fit DAG type
for each subcircuit. However, existing hybrid optimization
methods face several fundamental limitations that constrain
their effectiveness. First, cluster-level predictions lack the
fine-grained vertex-level feature extraction necessary for op-
timal Boolean network partitioning. Second, the sequential
“partition-then-predict” paradigm prevents feedback from pre-
diction results to improve clustering quality. Finally, these
methods often rely on general-purpose clustering techniques
that fail to capture the intricate relationship between circuit
structures and their optimal optimization strategies, leading to
suboptimal partitioning decisions.

To address these challenges, this paper proposes CHOP,
a hybrid optimization framework that incorporates circuit-
specific characteristics into the optimization process. As shown
in TABLE I, CHOP differs from traditional logic optimization
frameworks. Unlike previous methods that rely on cluster-level
prediction, CHOP extracts structural and functional features
from each vertex in a Boolean network. These features guide
the network partitioning and enable the selection of optimal
optimization strategies for each cluster, thereby effectively
managing the complexity of modern circuit structures. Overall,

-

—————————

~CAIG
Boolean Network

............

Fig. 2. A hybrid optimization example.

this paper makes the following contributions.

o Paradigm shift: A fundamental shift from “partition-
then-predict” to “predict-then-partition” paradigm, en-
abling optimization-aware circuit clustering that naturally
aligns with synthesis objectives.

« Vertex-level prediction: A novel vertex-level feature
extraction method using self-supervised learning that cap-
tures fine-grained optimization preferences, surpassing
traditional cluster-level approaches.

« Hierarchical clustering: A circuit-specific hierarchi-
cal partitioning algorithm that integrates both structural
topology and functional optimization tendencies through
adaptive masking strategies.

« Optimization selection: An intelligent optimization
method selection strategy that leverages predicted vertex
features to determine the most suitable synthesis tech-
nique for each cluster.

Moreover, experimental results on the EPFL benchmark
[21] demonstrate the effectiveness and efficiency of our pro-
posed framework compared with the state-of-the-art.

« For logic optimization, CHOP achieves average node-
depth-product (NDP) reductions of 16.07% and 12.39%,
with average speeds of 1.92x and 2.98x, compared with
the state-of-the-art hybrid optimization methods.

o For 6-LUT mapping, CHOP achieves average ADP re-
ductions of 17.99% and 36.42%, with average speeds
of 1.78x and 2.48x, compared with the state-of-the-art
hybrid optimization methods.

The rest of this paper is organized as follows: Section II
provides some background information. Section III introduces
the terminology used and our problem formulation. Section IV
introduces our proposed hybrid optimization framework. Sec-
tion V presents the experimental methods and results. Finally,
Section VI summarizes our work.

II. PRELIMINARIES
A. Boolean Network

A Boolean network [22] is a mathematical model that
characterizes a system of interconnected binary variables,
where each variable can assume one of two possible values:
true (1) or false (0). In a Boolean network, the state of each
vertex at time ¢+ 1 is determined by a Boolean function that
depends on the states of a subset of the other vertices at time

t. Thus, the dynamics of the network are governed by the
following equation:

zi(t+ 1) = fi(wi, (), iy (), o i, (1)), (1

where x;(t) is the state of vertex ¢ at time ¢, f; is the Boolean
function associated with vertex i, and x;, (t), x4, (1), ..., z;, (t)
are the states of the % input vertices that regulate vertex . The
simplicity of Boolean networks, coupled with their capacity
to model complex interactions, makes them a powerful tool
for both theoretical analysis and practical applications in
diverse domains. Notably, in digital circuit design, Boolean
networks facilitate the representation of both combinational
and sequential circuits, thereby enhancing our understanding
and manipulation of these systems.

B. Logic Representation

In logic synthesis, Boolean networks are typically modeled
using DAGs, which provide multiple representation structures.
These representations provide structured and efficient ways
for describing and optimizing Boolean networks, facilitating
the analysis and transformation of Boolean functions. The
following four structures are prevalent in representing Boolean
networks, each with distinct characteristics and applications.
AIG [3] is a widely used representation in which the vertices

correspond to AND operations, and the edges represent
signals or their inversions.

MIG [4] incorporates majority operations (a 3-input majority
is M(a,b,c) = (a Ab)V (aAc)V(bA c)) alongside
inverters, allowing for a more compact and expressive
representation of certain logic functions.

XAG [5] merges XOR operations with AND operations and
inverters, particularly advantageous for applications in-
volving parity checks and error detection, where XOR
operations play a crucial role.

XMG [6] integrates XOR operations, majority operations,
and inverters, suitable for a wide range of applications,
including quantum circuit synthesis and cryptographic
function implementations.

Overall, as stated in Theorem 1, the XMG has the most

expressive power, as it can represent all other structures. The

AIG is the simplest structure, while the MIG and XAG are

intermediate representations that can capture specific logic

functions more efficiently than the AIG.

Theorem 1. AIG C MIG / XAG C XMG.

Proof. In all graphs, inverters are represented by comple-
mented edge markers.

AIG C XAG Since AIG nodes only have AND operations,
an AIG is trivially an XAG where all XOR nodes are
unused, i.e., AIG C XAG.

AIG C MIG / XMG Since an AND operation f = a A b is
equivalent to a 3-input majority operation with one input
tied to 0: f = M (a, b,0), an AIG node is always a special
case of a majority node, i.e., AIG C MIG / XMG.

MIG C XMG Since MIG nodes only have majority opera-
tions, an MIG is trivially an XMG where all XOR nodes
are unused, i.e., MIG C XMG.

Algorithm 1: Leiden algorithm.

Input: A network G(V, E).
Output: Partition of vertices into communities cs.
1ces+ {{v}|veV}
2 while modularity @) improves do
3 for v e V do
| ¢s < Move v for maximizing Q
cs < Identify potential subcommunities in cs
G(V, E) + Each ¢ € cs is regarded as a vertex
return cs

XAG C XMG Since XAG nodes have XOR and AND oper-
ations and an AND node is always a special case of a
majority node, an XAG is always a special case of an
XMG, i.e., XAG C XMG.

Therefore, we conclude AIG C MIG / XAG C XMG. O

C. Community Detection

In complex networks, nodes tend to cluster into relatively
dense groups, commonly referred to as communities, whose
modular structure is typically unknown in advance. Com-
munity detection [23] thus becomes a crucial problem for
understanding the structure of large and complex networks.
Among the best-known methods for community detection are
those based on optimizing modularity [24], a measure of
partition quality, such as the Louvain [25] and Leiden [26]
algorithms. These methods identify communities by maximiz-
ing modularity @, effectively performing network partitioning
tasks. Although the definitions of () vary slightly, the primary
formula is as follows:

1 kyky
Q= g 2 =50

u,v

)é(cus cv), 2

where m is the total number of edges in the network, k, is the
degree of vertex v, A is the adjacency matrix of the network,
and 6(c,, ¢,) is an indicator function that equals 1 if vertices
u and v belong to the same community, and O otherwise.

The Louvain algorithm is characterized by its simplicity and
elegance, optimizing the modularity through two fundamental
phases: (i) local movement of nodes; and (ii) aggregation of
the network. In the local movement phase, individual nodes
are relocated to the community that yields the largest increase
in quality function. Subsequently, in the aggregation phase,
an aggregate network is constructed based on the partition
obtained in the local movement phase, and each community
in this partition is treated as a node in the aggregate network.
The two phases are repeated until there is no further increase
in the quality function. However, the Louvain algorithm may
yield arbitrarily poorly connected communities, even internally
disconnected communities in the worst case [26].

To address this problem, the Leiden algorithm [26] in-
troduces a combination of smart local movement, fast local
movement, and random neighbor movement to produce parti-
tions in which all communities are well-connected. Also, the
Leiden algorithm is faster than the Louvain algorithm and

can find superior partitions. Algorithm 1 outlines the process

of the Leiden algorithm, which optimizes modularity @) by

iteratively refining community partitions. The algorithm begins

with an initial partition where each vertex belongs to its own

community (line 1). It then iteratively performs the following

steps:

Local moving phase: Vertices are reassigned to neighboring
communities to maximize modularity gain (lines 3-4).

Refinement phase: The resulting communities are divided
into smaller and well-connected subcommunities to en-
sure connectivity (line 5).

Aggregation phase: The network is coarsened by treating
each refined community as a single vertex (line 6).

This process repeats until convergence (i.e., no further im-
provement in modularity), producing a high-quality partition
with connectivity guarantees (lines 2-6).

During hybrid logic optimization, it is often difficult to
identify which vertices should be clustered together into a
subcircuit to yield optimal optimization results. Consequently,
this paper will integrate community detection methods with
logic synthesis to enhance circuit clustering. This approach
aims to overcome the complexities inherent in modern circuit
designs and facilitate the exploration of more effective circuit
design strategies.

D. Representation Learning for Circuit

Circuit representation learning has emerged as a pivotal area
in EDA, reflecting the broader trend in artificial intelligence to-
ward developing general representations that can be applied to
a variety of downstream tasks. Within this field, the DeepGate
family of models [27], [28] has pioneered the use of GNNs
to encode AIGs, enabling a wide range of EDA applications,
such as testability analysis [29], power estimation [30], and
SAT solving [31], [32]. Notable advancements include the
introduction of Gamora [33] and HOGA [34], which enhance
reasoning capabilities by effectively representing both logic
gates and their associated cones. Additionally, PolarGate [35]
addresses the challenges related to functionality representation
by leveraging the principles of ambipolar states. Despite the
progress made with GNNs, challenges such as over-squashing
and over-smoothing persist. To mitigate these issues, the recent
work of DeepGate3 [36] utilizes DeepGate?2 as a tokenizer and
then leverages the global aggregation mechanism of transform-
ers with a connective mask to enhance circuit representation.
As a result, DeepGate3 demonstrates enhanced performance
across various pre-training tasks at both gate-level and graph-
level.

III. PROBLEM FORMULATION
A. Terminology

A DAG serves as an effective representation of a Boolean
network, denoted as G(V, E). In this representation, the set
of vertex V typically includes a collection of primary inputs
(PIs), primary outputs (POs), and internal nodes within the
network. The directed edge set £ C V' x V illustrates the con-
nectivity relationships among the vertices, with the orientation

of these edges indicating the direction of the data flow within
the circuit. For any vertex v € V, we define FI(v) and FO(v)
to represent the sets of fan-in and fan-out vertices, respectively.
Consequently, for any vertex u € FI(v) or v € FO(u), there
exists a directed edge (u,v) € E. In particular, for any ¢ € PIs
or o € POs, their respective sets of fan-in and fan-out vertices
are empty. Furthermore, the depth of a Boolean network is
determined as the maximum logic level among all POs, and
the size of the network is the total number of vertices within G.
For any vertex v, the logic level ¢ of a vertex v is recursively

defined as ¢(v) = max ¢(u)+ 1.
u€FI(v)

B. Problem Formulation

Hybrid logic optimization involves the application of vari-
ous circuit graphs and the corresponding logic optimization
methods to a Boolean network. Since the circuit design
often involves multiple metrics, such as delay and area, the
optimization process seeks to achieve a balance among these
metrics. This paper specifically focuses on optimizing the
area-delay product (ADP), a widely used metric in circuit
design that effectively balances both delay and area. Hence,
the optimization problem in this paper can be formulated as
follows:

Input: A Boolean network G(V, E).
Output: An optimized circuit G'(V', E’).
Constraints: The logic functions remain the same before and

after optimization.
Goal:

min {ADP = delay x area}, 3)

where minimizing the ADP facilitates a more effective
balance between delay and area, thereby optimizing the
overall performance of the circuit.

This problem poses several substantial challenges. Firstly,
it is essential to quantify the closeness between vertices
within a Boolean network. Although the relationships among
vertices may not be immediately apparent from the circuit’s
representation, they do objectively exist and can be exploited
to enhance the partition of G. We define the closeness between
vertices u and v as P, 4

1 if (u,v) € E,
v 4
Puv {0 otherwise, @

where (u,v) denotes a directed edge from u to v. Secondly,
the effective partition of the Boolean network is vital, as
the quality of the partition directly influences the outcome
of the hybrid optimization process. Lastly, executing all op-
timization methods on each cluster can be exceedingly time-
consuming. If we can harness the properties of the cluster to
directly identify which circuit representation and correspond-
ing optimization method are most suitable for a given cluster,
this predictive capability can substantially reduce the overall
runtime of the optimization process. We will address these
challenges within the framework of CHOP, thereby enhancing
circuit design.

.......................

. Aggregated

AIG cost; AIG costyy,

1.8,1.5}

Qelecti,

1
1

O Feature 1 MIG cost; MIG cost y,
o S

] 1 XMG cost, XMG costyy,
. Vertex 1

Feature 1 XAG cost; XAG costyy

_Ci_rclliz F:nlbgdiligg ______ ,’ Vertex Feature Label Prediction L(1) L{|V])
Sub-circuit Optimization Circuit Clustering
B AIG
XAG
D= (1.2, 15, ijDD

B = < {20, 1.1, 1 DY
r.B SE[? o M6/ xe b D[DD j[DDD
Sub-circuit Optimizati Optimization Hierarchical Clustering Initial Partition
Fig. 3. The flow of the CHOP framework.
IV. CHOP 1) Feature Selection: Given that the optimization potential

To address these limitations and incorporate circuit-specific
characteristics into the hybrid optimization process, this sec-
tion presents CHOP, a hybrid optimization framework that
fundamentally shifts from cluster-level to vertex-level anal-
ysis. Unlike traditional methods that rely on post-partitioning
prediction, CHOP extracts structural and functional features
from each vertex in a Boolean network and uses these features
to guide optimization-aware partitioning. This paradigm shift
enables more precise clustering that naturally aligns with
optimization objectives, thereby addressing the core limitations
of existing approaches.

As illustrated in Fig. 3, CHOP operates through three main
stages: (1) vertex labeling, where each vertex is assigned
an optimization preference label based on its local structural
and functional context; (2) circuit clustering, where vertices
with similar labels are grouped using a hierarchical clustering
algorithm; and (3) sub-circuit optimization, where each cluster
is optimized using its most suitable optimization method, and
the results are merged to form the final optimized circuit.

A. Vertex Labeling

Unlike general graphs, Boolean networks exhibit not only
complex interconnect topologies but also rich functional se-
mantics, as each vertex corresponds to a specific logic gate
or sub-function. This dual complexity poses significant chal-
lenges for downstream optimization tasks, which often require
detailed, fine-grained knowledge of circuit characteristics at
the vertex level. To address these challenges, we propose
a learning-based feature extraction method that efficiently
encodes both the structural and functional attributes of each
vertex within the network. In contrast to traditional approaches
that rely on manual feature engineering, which are often time-
consuming and difficult to generalize, our method leverages a
pre-trained neural model to infer expressive representations of
circuit elements automatically.

of a circuit vertex is fundamentally determined by its local
structural context and functional dependencies, we utilize the
features of a subgraph surrounding a vertex to represent its
optimization characteristics. This approach is theoretically
grounded in the principle that logic optimization techniques
operate on localized circuit patterns, where the effectiveness
of a specific optimization method depends heavily on the
surrounding logic structure. In the context of a Boolean
network, we introduce a partial order <, defined such that
for any two vertices v and v, the relation v =< v holds if
there exists a path from u to v with a length of at most k.
For a specific vertex v € V, we define its expanded subgraph
with degree k as follows:

ge()={ueV iugpvU{ueV:ivgu}. (5)

As an illustrative example, the red vertex located in the upper-
left corner of Fig. 3 and its surrounding highlighted vertices
collectively construct a subgraph with k = 1.

After obtaining the expanded subgraph gy (v) for vertex v,
the next step involves identifying the optimal circuit graph for
g (v). The ADP values produced through different optimiza-
tion methods for the expanded subgraph gi(v) may exhibit
similarities. Therefore, relying solely on the circuit graph with
minimum cost can not accurately reflect the characteristics
of a vertex. This paper denotes the costs of different cir-
cuit graphs applied to the expanded subgraph as a vector:
Cost = [costy, costa, - -, cost,], where cost; represents the
ADP generated using the optimization method for the i
structure of circuit graphs. To facilitate the analysis of different
vertex features, we apply softmax normalization to generate
the final label vector L for each vertex:

L = softmax(Cost). (6)

The processed subgraph set S(G), together with the label set
L, serves as training data for learning the labels of vertices
within the Boolean network. These labels subsequently guide

both the partition and prediction tasks. In the following sec-
tions, we will introduce the graph neural network architecture
adopted for label prediction.

2) Model Selection: To reduce the time-consuming process
of acquiring vertex labels L, an accurate and efficient predic-
tion model is essential to lower the overall computational cost.
Our task requires considering both structural and functional
aspects of logic synthesis, making models that focus solely on
functionality, such as FGNN [37] and PolarGate [35], unsuit-
able. Additionally, the partitioned subcircuits in our dataset
vary widely in size, demanding a model that generalizes well
across different scales. Since incorporating model predictions
adds time overhead, it is crucial to use a neural network with
low computational complexity to keep the overall runtime rea-
sonable. Given these criteria, we chose DeepGate, a state-of-
the-art transformer-based model that captures both structural
and functional features while offering strong generalization
capabilities [36]. Note that our framework remains flexible
and configurable, allowing alternative models to be integrated
as needed.

3) Label Prediction: According to the subgraph expansion
method in Section IV-A1, we obtain a set of subgraphs S(G).
For each subgraph gj(v), we prepare the corresponding label
L(v) = [li(v),l2(v),- -+ ,1,(v)]. Subsequently, we train the
DeepGate model with these subgraphs and their corresponding
labels, as illustrated in the upper middle part of Fig. 3. Given
a vertex v, to predict its corresponding label ﬁ(v), we first
get the expanded subgraph gx(v) and then use the DeepGate
model to embed the subgraph:

VF = DeepGate(gi(v)).

VF = {vfi,vfa,-- ,vfjy|} represents the embedding se-
quence of the subgraph, where |V| denotes the number of
vertices {v;,7 = 1,2,...,|V|} within gi(v), and vf,, repre-
sents the embedding sequence of vertex v;. Then, we predict
the L(v) by concatenating both functional and structural
embedding and feeding the embedding into a Multi-Layer
Perceptron (MLP):

(7

L(v) = MLP (VF). (8)
Finally, we calculate the loss between the predicted label L(v)
and the ground truth L(v) after the softmax function:

loss = ||softmax(L(v)), softmax(L(v))]1.)

During the process of using DeepGate to predict the la-
bel set L for all vertices in the Boolean network G, each
vertex v iteratively aggregates information from its neighbors
and updates its own representation. This iterative message-
passing mechanism is referred to as circuit embedding. The
outcome of this embedding process is formally defined in
Equation (7), and its structural location is highlighted by the
red dotted region in the upper half of Fig. 3. The resulting
vertex representations are subsequently fed into a multi-layer
perceptron, as described in Equation (8), to generate the final
label predictions. This prediction stage corresponds to the area
shown in the upper right corner of Fig. 3.

Algorithm 2: Circuit Clustering.

Input: A Boolean network G(V, E), labels L, C.
Output: Partition results cs.

1 ¢ < Calculate the logic levels of all vertices

2 P + Get POs in G sorted by ¢

3ces+ 0

4 while P # () do

5 r < argmax,cpt(r), P < P\ {r}

6 | c0,q«0

7 R

8 while () — ¢(v) < ¢ do

9 if 1(r) —t(v) > ¢/2 A || < 2¢/271 then
10 | break

1 ¢+ cU{v}

12 q < qUFI(v) > Descendingly sort FI(v) by ¢
13 v < q.pop()

14 P+ PU{u|ueFLw)\cvec}

15 cs + csU{c}

16 1 <« 1

17 while |cs| > |L| do

18 V'’ < Regard each ¢ € cs as a vertex

19 E’ + Create edges among V' through mask 1)
20 ¢s + Perform Leiden for G'(V’/, E’) with L
21 Y —P+1

22 return cs

B. Circuit Clustering

As discussed in Section II-C, conventional partition or
clustering techniques often struggle to accurately determine
which vertices should be grouped together to form subcircuits
that facilitate efficient and effective logic optimization. These
methods typically rely on purely structural metrics or heuristic
community detection algorithms, which may not align well
with the functional and optimization-relevant characteristics
of Boolean networks. Consequently, they often generate parti-
tions that fail to capture the true logical boundaries and interac-
tion patterns necessary for high-quality synthesis. To address
this limitation, we propose a partition algorithm specifically
tailored for logic optimization in Boolean networks. Unlike
traditional approaches that pursue general-purpose structural
decomposition, our algorithm focuses on identifying subcir-
cuits that are particularly conducive to logic simplification
and performance improvement. The algorithm leverages both
structural features and optimization potential to guide partition
decisions in a manner that aligns with the requirements of syn-
thesis and transformation tasks. The complete methodology,
including algorithmic details, heuristics, and implementation
considerations, is illustrated in Algorithm 2, which consists of
two steps: (i) initial partition (lines 1-15) and (ii) hierarchical
clustering (lines 16-21).

1) Initial Partition: Given the intricate topological and
functional structure of Boolean networks, coupled with the
cone-based characteristics of most logic optimization tech-
niques, it is essential to perform a high-quality initial partition
before global clustering. Such an initial decomposition not
only facilitates more effective downstream optimization, but

also ensures structural compatibility with cone-centric logic
synthesis frameworks.

To this end, we introduce a specialized initial partitioning
algorithm designed to identify structurally meaningful sub-
graphs. The process begins with the calculation of the logic
levels ¢, as defined in Section III-A, for all vertices in the
Boolean network G (line 1). The algorithm then traverses the
network G from its POs to effectively facilitate initial partition.
Specifically, all POs are inserted into a priority queue P, which
organizes the elements in descending order according to their
logic levels (line 2). This sorting strategy ensures that vertices
with a greater logical depth are prioritized during cone expan-
sion, thus increasing the potential for optimization. The initial
partitioning proceeds iteratively (lines 4-15). At each iteration,
the vertex with the highest logic level is extracted from P
and designated as the root r of a new cone c (line 5). The
cone c is then expanded through a traversal toward the input
direction, using a breadth-first search strategy (lines 8-13).
This expansion follows the direction opposite to the circuit’s
signal flow, effectively tracing functional dependencies from
outputs to inputs and naturally exposing the underlying logic
structure.

Notably, the inclusion of a vertex v into a cone c implies that
v is no longer eligible to serve as a candidate root in subse-
quent cone construction iterations. This constraint underscores
the importance of carefully maintaining the quality of each
cone, as suboptimal selections in earlier stages may compro-
mise the overall effectiveness of the partition and optimization
process. To assess the quality of a cone, we primarily consider
the number of vertices it encompasses. A cone with a greater
number of vertices typically reflects a denser concentration
of logic elements within a constrained range of ¢ difference.
This dense grouping implies a higher likelihood of internal
logic redundancy within the cone, which in turn enhances
its potential for logic simplification and optimization. Con-
sequently, striking an appropriate balance between cone size
and logic optimization potential becomes essential. To achieve
this balance, an early stop mechanism is introduced (lines 9-
10), which serves as a dynamic control for the cone expansion
process. Specifically, as the cone expands from its root vertex
r, the algorithm monitors both the ¢ range and the size of the
current cone. If the condition ¢(r) — ¢(v) > (/2 is met for a
newly encountered vertex v, and the current cone size satisfies
lc| < 2¢/271, then the expansion is halted prematurely. This
stop condition prevents overextending a cone that is too small
to yield meaningful optimization benefits. Otherwise, if the
condition is not satisfied, all vertices that meet the criterion
1(r) — +(v) < ¢ are incorporated into the cone c.

An illustrative example of this early stop strategy is shown
in Fig. 4, where the threshold parameter is set to ¢ = 8. During
the expansion of a cone rooted at vertex a, the algorithm
reaches vertex h and evaluates whether to continue expansion.
At this stage, the cone contains 4 vertices, which is less
than the threshold 2¢/2~1 = 8. Therefore, the expansion is
terminated early, and the vertices e, f, g, and h, which lie
beyond the acceptable size depth tradeoff, are added to the
candidate set P for potential use as roots in future cone
construction. This example highlights how the mechanism

t(a) —u(h) > (/2
w < 9371 earlystoy

Fig. 4. Example of early stop mechanism.

effectively maintains both diversity in cone root selection and
structural quality in logic clustering.

After expansion, the algorithm updates the priority queue
P (line 14) and stores the constructed cone c in the partition
set cs for subsequent processing (line 15). The algorithm ter-
minates when the priority queue P is empty. As illustrated in
the lower-right portion of Fig. 3, this procedure yields a set of
five distinct clusters, each representing a localized logic region.
These clusters serve as the output of the initial partition stage
and lay the foundation for subsequent hierarchical clustering
and sub-circuit optimization stages.

2) Hierarchical Clustering: Hierarchical clustering begins
with the initial partition obtained from Section IV-B1 and
progressively merges these clusters to yield high-quality clus-
tering results (lines 16-21). 1) is a masking that will be
utilized in the subsequent hierarchical clustering phase, and
it gradually increases with the number of iterations (line 16).
Initially, each cluster ¢ € cs is treated as an individual vertex
and added to the vertex set V’ (line 18). The edges in the
intermediate graph G’, denoted as E’, are constructed based on
the connectivity information from the original graph G, with
the process governed by a masking ¢ (line 19). Specifically,
for any pair of vertices u and v belonging to clusters c;
and c;, respectively, an edge is established between c¢; and
cj if py. > 0, that is, their logic level difference satisfies
t(u) — t(v) <.

This masking strategy provides two key benefits that en-
hance the quality and efficiency of the subsequent partition and
optimization processes. First, from the perspective of Boolean
function decomposition, a significant difference in the ¢ values
between two vertices can be interpreted as an indication of the
extraction of common factors. In such scenarios, clustering
these vertices within the same subgraph by retaining their
connecting edge may obscure opportunities for more effec-
tive algebraic simplification. To mitigate this, the algorithm
is designed to mask such edges, effectively ignoring their
influence during clustering. This selective omission enables
the clustering process to better explore the potential optimiza-
tion. Second, from a timing or path-sensitivity perspective,
vertices that reside on the critical path, or more generally on
deeper logic paths, are typically more sensitive to interconnect
changes. Retaining the edges between such vertices is essential

for preserving the original timing characteristics and enabling
delay-aware optimizations. The masking strategy, by design,
preserves these structurally and temporally important edges,
ensuring that clustering does not inadvertently degrade circuit
performance. As a result, the clusters produced through this
strategy naturally promote depth-aware logic grouping. This
not only facilitates more effective optimization in subsequent
logic synthesis stages but also contributes to the construction
of logic networks with reduced logic depth and improved
performance profiles.

In the original graph G, each vertex v is associated with
a label L(v), which reflects its cost information for different
logic optimization algorithms. In the constructed graph G’,
this property must be preserved to ensure meaningful guidance
during the hierarchical clustering process. Accordingly, for
each vertex ¢ in G’, its label L(c) is defined as follows:

_ YyecL(v)
]

L(c) ; (10)
where |c| refers to the number of vertices in G which are
contained in c. For an edge (c;,¢;) in G, its weight we, ; is

defined as:

Wey,e; = Z Z Pu,p X (w - L(u) + L(’U)) + Seineis (11)
ucc; veC;

|L]—1

Z]l(rc‘i,wrc’j,x) x 2|L‘_rci">"
A=0

12)

Scie; =

where 7., , represents the index value of /)(c;) in ascending
order of L(c;). The indicator function 1(r, ,,7,) equals 1
if re, , = rc; , and equals 0 otherwise. When two vertices c;
and c; exhibit high similarity S¢;,c;» this increases the tendency
of these vertices to be grouped into the same cluster.

After constructing the graph G’, the Leiden algorithm is
applied to cluster the vertices within this graph (line 20).
Following each clustering iteration, the masking is updated
by ©» =¥ + 1 (line 21). Constraining v to a relatively small
value enables the hierarchical clustering to capture variations
across topological levels in a fine-grained way. This process
is repeated iteratively until the number of resulting clusters
falls below the specified threshold |L|. As illustrated in the
lower part of Fig. 3, the hierarchical clustering procedure
ultimately generates four distinct cluster groups, each visually
distinguished by a different color.

The computational complexity analysis of Algorithm 2
reveals its efficiency advantages. During the initial partition
stage, each vertex is evaluated once to determine its initial
cluster assignment, resulting in a complexity of O(|V]) for
vertex processing and O(|E|) for edge traversal (lines 4-15).
In the subsequent hierarchical clustering stage, the masking
filtering process depends on the number of edges in the
Boolean network, yielding O(|E/|) complexity (line 19). Since
the Leiden algorithm operates with linear complexity in
the number of edges, this stage contributes O(|E’|) where
|E'| < |E| due to masking (line 20). Assuming the algorithm
performs [hierarchical iterations until convergence (lines
17-21), the overall time complexity can be expressed as

Algorithm 3: Overall flow of CHOP.

Input: A Boolean network G(V, E).
Output: An optimized circuit G'(V', E').
1 L < Predict the labels of all vertices V'
2 ¢s + Perform circuit clustering for G with L
3 for c € cs do
4 o < Select the optimization method for ¢
5 ¢ < Perform the selected optimization o for ¢
6 G'(V',E") + Merge cs
7 return G'(V', E')

O(I x |E|), where I is typically small in practice (usually
I <10 for most circuits).

C. Sub-circuit Optimization

After circuit clustering, the Boolean network is divided into
multiple clusters, each representing a localized subcircuit. To
fully exploit the optimization potential of these subcircuits, it
is necessary to select appropriate logic optimization strategies
tailored to the structural and functional characteristics of
each cluster. To this end, we propose a logic optimization
selection algorithm that comprises two key components: ten-
dency acquisition and sub-circuit optimization. The tendency
acquisition module is responsible for analyzing each cluster
and inferring its optimization preferences or tendencies, which
may reflect a specific Boolean network structure for which
the subcircuit is more suitable. Based on this guidance, the
subcircuit optimization module then applies the corresponding
optimization method to each cluster, ensuring that the selected
strategy aligns with the intrinsic logic structure and optimiza-
tion potential of the subcircuit.

1) Tendency Acquisition: Each cluster ¢ € cs is associated
with a circuit graph optimization method most suitable for it.
The tendency T'(c) can be estimated based on the label L of
the vertices within ¢, enabling a more targeted and effective
optimization strategy, i.e.,

T(c) = argmin L(c). (13)

Since L(c) is generated by aggregation of L(v),v € ¢,
choosing the minimum value of L(c) means that most vertices
in ¢ prefer to choose the T(c)!" optimization algorithm.
The lower left part of Fig. 3 shows an example, where the
optimization method corresponding to the index marked by
red digits is selected for the cluster.

2) Sub-circuit Optimization: Each cluster is subsequently
optimized using its designated logic optimization technique.
The optimized clusters are then merged into a complete
Boolean network by aligning their PIs and POs based on their
original correspondences. As a result, an optimized Boolean
network is reconstructed. This process is illustrated in Fig. 3,
where the final concatenation of optimized clusters into the
output Boolean network is highlighted in blue.

D. Overall Flow of CHOP

In summary, the overall workflow of CHOP is illustrated in
Algorithm 3. The process begins by utilizing the pre-trained

model, as introduced in Section IV-A, to predict the label L(v)
for each vertex v within the Boolean network G (line 1). This
learning-based approach effectively mitigates the inefficiency
of conventional feature extraction methods. Subsequently, the
network G, along with the resulting set of labels L, is fed
to the circuit clustering algorithm detailed in Section IV-B to
obtain the clusters cs (line 2). By incorporating both initial
partition and hierarchical clustering, the algorithm is capable
of generating optimization-oriented subcircuits. Finally, each
cluster ¢ undergoes logic optimization using the techniques
introduced in Section IV-C (lines 3-5), and the resulting
subcircuits are then merged to construct the final optimized
circuit G'(V', E’) (line 6).

V. EXPERIMENTAL RESULTS

The proposed CHOP framework was implemented in C++
and Python. For evaluation, we employed circuits from EPFL
benchmarks [21]. All experiments were conducted on a ma-
chine with an Intel(R) Xeon(R) Platinum 8350C processor,
an NVIDIA A100 GPU, and 1.5 TB of memory. To evaluate
the effectiveness of CHOP, we employed the same four types
of logic representations and their corresponding optimization
methods as utilized by LSOracle and HeLLO. These optimiza-
tion methods involve rewrite, refactor, balance, and resubsti-
tution, all of which are implemented in the mockturtle [38],
an open-source logic network library. The baselines consist of
the following two parts:

« A single logic representation along with its corresponding
optimization method, including AIG, MIG, XMG, and
XAG.

o Hybrid optimization frameworks, specifically LSOra-
cle [17] and HeLO [18]. Since we were unable to obtain
the prediction model of LSOracle, we performed all the
logic optimization methods it provides and selected the
best outcome as the final result.

0.30 | T I I I I
—e— Logic Optimization
®
025 \\ LUT Mapping
0.20 |-\ |
o 0.15 |- \ *
|
b
0.10 |- \ i
—_— - PN PN
0.05 |- — =
0.00 | | | | | | | | | I
0 20 40 60 80 100 120 140 160 180 200

Epoch

Fig. 5. Training loss curves with logic optimization and LUT mapping
as the targets, respectively.

A. Accuracy of Labeling Vertices

We extracted all subgraphs using the method described in
Section IV-A1. During the expansion process, each vertex was
expanded with an expansion degree of £ = 3. Afterward, we
applied the four aforementioned logic optimization methods to

1 | —e— Area Delay
(5] T
= .
= 087 Optimal:}0.10
>
= 0.6
5]
N
= 04+
g
S 0.2+
Z.

0 £{

| 1 | | | |

0.10 0.15 0.20 0.25 0.30

Percentage for ¢ calculation

Fig. 6. Parameter sensitivity analysis for deep circuits: Impact of ¢
percentage on optimization quality for the 1og2 circuit (depth=444).
The optimal percentage of 0.10 minimizes both area and delay devi-
ations, validating our parameter choice ¢ = max(depth x 0.1, 10).

—e— Area Delay

0.8 + !

(depthx0.1}= 7) Optimal:

Normalized Value

Fixed ¢ values

Fig. 7. Parameter sensitivity analysis for shallow circuits: Impact
of fixed ¢ values on optimization quality for the voter circuit
(depth=70). The optimal value ¢ = 10 provides the best balance,
demonstrating the effectiveness of our minimum threshold in the
formula ¢ = max(depth x 0.1, 10).

each subgraph. We evaluated the number of vertices and the
logic depth after optimization, which reflect the structure of
the subgraph prior to technology mapping. We further assessed
the latency and area after performing 6-LUT mapping to
characterize the post-mapping implementation quality. These
evaluation results were then used to compute the labels defined
in Equation (6), ensuring that the assigned labels accurately
reflect the behavior of each subgraph under different opti-
mization strategies. Finally, we fed these subgraphs and their
corresponding labels into the prediction model as training data.

We expanded subgraphs centered at each vertex across
a set of circuits from the ISCAS’85 [39] and EPFL [21]
benchmarks, and randomly sampled 10,000 subgraphs to con-
struct the training dataset. The model was trained for 200
epochs, with the loss function defined in Section IV-A3. The
training loss curve is illustrated in Fig. 5, where the loss
value stabilizes after approximately 80 epochs. Using the index
corresponding to the minimum predicted value of L as the
evaluation criterion, the model achieves final accuracies of
99.62% and 99.38%, respectively.

B. Setting of ¢

To rigorously evaluate the impact of the parameter (, we
conducted controlled experiments under two complementary

TABLE II. Experimental results on the EPFL benchmark [21] after logic optimization.

\ AIG \ MIG \ XMG \ XAG | LSOracle [17] | HeLO[18] | CHOP

Circuit | depth node NDP| depth node NDP| depth node NDP| depth node NDP| depth node NDP| depth node NDP| depth node
adder 55 1913 4.80 14 1567 1.00 14 1567 1.00/ 213 1016 9.86 14 1567 1.00 12 2043 1.12 14 1567
arbiter 20 5140 1.09 11 6335 0.74 15 5695 0.90 59 8973 5.59 29 5688 1.74 10 6392 0.68 15 6310
bar 16 3599 1.63 12 3336 1.13 12 3336 1.13 12 3141 1.06 16 3599 1.63 12 3337 1.13 12 2952
cavlc 13 722 1.34 10 702 1.00 15 697 1.49 14 729 1.45 10 702 1.00 10 702 1.00 10 702
ctrl 13 96 1.61 7 172 1.55 8 180 1.86 8 137 1.41 6 124 0.96 6 172 1.33 8 97
dec 3 304 1.00 3 304 1.00 3 304 1.00 3 304 1.00 3 304 1.00 3 304 1.00 3 304
div 1714 122441 2.30| 970 94088 1.00| 970 94088 1.00| 4372 57247 2.74| 1917 117962 2.48| 743 145573 1.19| 970 94088
hyp 16240 320826 1.33[16116 242549 1.00|16116 242549 1.00|20717 197031 1.04|21234 230663 1.25|15964 265710 1.09|16118 242367
i2c 9 1417 0.97 11 1381 1.15 16 1358 1.65 13 1416 1.40 9 1417 0.97 11 1381 1.15 9 1465
int2float 10 258 1.25 8 258 1.00 14 270 1.83 12 254 1.48 8 258 1.00 8 258 1.00 8 258
log2 478 30809 1.50(238 40214 0.97| 238 40214 0.97| 366 36277 1.35| 343 39109 1.36| 232 73294 1.73| 252 39060
max 80 6909 2.46 47 6418 1.34 47 6418 1.34| 187 3739 3.11 47 6418 1.34 54 7812 1.88 60 3749
memctrl 57 79655 1.27 69 51762 1.00 95 47472 1.26 83 56188 1.31 98 54531 1.50 61 56592 0.97 69 51762
multiplier | 478 30809 3.16| 122 35342 0.93| 122 35342 0.93| 274 27062 1.59| 181 31043 1.21| 135 49548 1.44| 149 31239
priority 211 734 1.12| 127 1101 1.01 126 1101 1.00f 166 1107 1.32| 126 1101 1.00{ 126 1101 1.00f 126 1101
router 16 443 1.14 13 478 1.00 16 455 1.17 31 291 145 13 478 1.00 13 478 1.00 13 478
sin 271 5277 1.75| 112 7315 1.00| 112 7315 1.00| 165 6184 1.25| 141 6483 1.12| 126 9667 1.49| 112 7315
sqrt 6994 19193 1.30| 3974 26080 1.00| 3974 26080 1.00| 5060 17856 0.87| 5072 19165 0.94| 3942 31486 1.20| 3974 26080
square 59 23939 1.35 39 21864 0.81 41 21289 0.83| 224 18549 3.96 87 21528 1.78 53 22335 1.13 50 20997
voter 76 9608 1.10 59 14002 1.24 60 13990 1.26 62 11760 1.09 76 10698 1.22 68 15292 1.56 72 9252
Ave.ratio| 161 106 167| 095 111 1.04] 1.09 111 LI8| 258 096 222| 122 106 127| 095 128 120] 1.00 1.00

NDP: normalized node-depth product relative to CHOP; depth: logic depth; node: number of nodes.

scenarios, designed to analyze its effect across circuits with
different logic depths.

For deep logic circuits, we select the 1og2 circuit (logic
depth: 444, 32,060 nodes before optimization), where (is
determined by scaling the logic depth with varying percent-
ages. This allows us to examine how different scaling factors
influence optimization outcomes. For shallow logic circuits,
we use the voter circuit (logic depth: 70, 13,758 nodes be-
fore optimization), where (is evaluated both as a proportional
parameter and as fixed values. This dual approach enables a
comprehensive analysis of (’s sensitivity under different depth
constraints. The experimental results are illustrated in Fig. 6
and Fig. 7.

The analysis reveals distinct optimization patterns across
both scenarios. As shown in Fig. 6, setting the scaling per-
centage to 0.10 for deep circuits uniquely achieves both area
and delay reductions below the mean, yielding the lowest area-
delay product among all tested configurations. This indicates
that excessively small { values underutilize the clustering
potential by creating overly fine initial partitions, while ex-
cessively large values generate coarse partitions that limit
subsequent refinement opportunities.

Similar trends emerge for shallow circuits (Fig. 7), where
the optimal fixed value (= 10 provides superior balance
between clustering granularity and optimization effectiveness.
To ensure robust performance across diverse circuit depths,
we establish a minimum threshold of 10, leading to the final
parameter configuration: (= max(depth x 0.1, 10).

C. Results of Logic Optimization

TABLE 1I presents the experimental results after logic
optimization on the EPFL benchmark, to minimize the node-
depth product (NDP), i.e., the product of the number of nodes
(“node”) and logic depth (“depth”). Notably, the NDP in TA-
BLE 1I is the ratio of the NDP of each baseline to the NDP of
CHOP. The results indicate that the optimization performance

varies significantly across the four single logic representation
methods. In most cases, the MIG-based method yields superior
performance among these four methods. These findings under-
score the limitations of existing logic optimization techniques
that focus solely on a single logic representation. In addition,
although XMG has the highest expressive power among these
four logic representations, the results reveal that XMG-based
optimization techniques do not consistently outperform their
counterparts. This inconsistency may stem from the heuristic
nature of the current optimization algorithms, which may not
fully leverage the expressive capabilities of XMG.

Furthermore, hybrid optimization methods also exhibit vary-
ing performance outcomes. Notably, in certain cases, the
overall performance of the hybrid strategy does not surpass
that of applying MIG alone. This phenomenon may result
from the relatively strong performance of MIG during the
logic optimization phase, while many subgraphs within the
hybrid method may have missed the opportunity to adopt MIG
as the final optimization method. Overall, CHOP shows the
best performance, specifically with average NDP reductions
by 29.58%, 1.81%, 10.74%, 33.26%, 16.07%, and 12.39%
when compared with AIG, MIG, XMG, XAG, LSOracle, and
HeL O, respectively. These significant improvements highlight
the importance of the combination of circuit clustering and
optimization method selection.

D. Results of LUT Mapping

However, it is worth noting that logic-level optimization
metrics alone do not fully capture the practical implications
for physical design. This is because different vertex types in a
Boolean network not only differ in expressive power but also
require varying amounts of physical resources to implement.
As a result, logic-level metrics such as gate count and logic
depth provide only a partial view of overall design quality.
To more accurately assess the practical effectiveness of the

TABLE III. Experimental results on the EPFL benchmark [21] after 6-LUT mapping.

\ AIG \ MIG \ XMG \ XAG | LSOracle [17] | HeLO[18] | CHOP
Circuit | delay area ADP |delay area ADP|delay area ADP |delay area ADP|delay area ADP|delay area ADP |delay area
adder |64 192 2.81 |11 397 1.00 | 14 409 1.31 | 64 192 2.81 |11 397 1.00 |9 583 1.20 | 11 397
arbiter |9 1876 1.21 |9 2577 1.67 |9 2577 1.67 |23 2313 3.82 |12 1877 1.62 |9 3439 222 |8 1741
bar 4 512 1.00 |4 512 1.00 | 4 512 1.00 |4 512 1.00 |4 512 1.00 |4 512 1.00 | 4 512
cavlc 8 114 131 |6 119 1.03 |6 119 1.03 |6 119 1.03 |8 114 131 |6 150 1.29 |6 116
ctrl 2 28 1.00 |2 28 1.00 |2 28 1.00 |2 28 1.00 |2 28 1.00 |2 30 1.07 |2 28
dec 2 273 1.00 |2 273 1.00 |2 273 1.00 |2 273 1.00 |2 273 1.00 |2 273 1.00 |2 273
div 2005 4213 1.01 |776 27491 2.54 |776 27491 2.54 | 1606 25529 4.88 | 1915 11869 2.71 |732 28889 2.52 (2010 4180
hyp 8520 49736 1.00 | 8520 49736 1.00 | 8520 49736 1.00 | 8520 49736 1.00 | 8509 51437 1.03 | 8651 69321 1.42 | 8520 49736
i2c 5 342 .13 |5 342 1.13 |5 342 1.13 |5 342 1.13 |5 342 .13 |5 362 1.20 |5 302
int2float |4 47 1.00 | 4 47 1.00 |4 47 1.00 |4 47 1.00 | 4 47 1.00 | 4 56 1.19 |4 47
log2 182 7893 1.24 |129 9102 1.01 {129 9103 1.01 |185 8125 1.30 | 151 8720 1.14 |137 22455 2.66 | 143 8094
max 45 1689 249 |22 2288 1.65 |22 2288 1.65 |89 787 2.29 |45 1689 249 |29 2574 244 |34 899
memctr]l |58 12064 1.30 |45 11969 1.00 |45 11969 1.00 |49 11709 1.07 |49 12657 1.15 |45 11969 1.00 |45 11969
multiplier | 127 6348 1.77 | 68 7453 1.12 |76 6821 1.14 | 119 6907 1.81 |91 6919 1.39 |76 9533 1.59 |75 6058
priority |35 225 1.00 |33 264 1.11 |33 265 1.11 |33 265 1.11 |35 225 1.00 | 116 391 5.76 | 35 225
router |13 53 1.00 | 13 53 1.00 | 13 53 1.00 | 13 53 1.00 | 13 53 1.00 |8 110 1.28 |13 53
sin 95 1590 1.27 | 66 1925 1.07 | 66 1925 1.07 |83 1583 1.10 |77 1714 1.11 |81 2708 1.84 |67 1779
sqrt 2034 4086 1.12 | 3897 8141 4.29 (3897 8141 4.29 |3689 7839 391 | 1957 3992 1.06 |3701 10664 5.34 | 1930 3828
square |47 5066 2.11 |30 4822 1.28 |32 4559 1.29 | 122 4130 4.46 |56 4447 221 |41 4830 1.75 |25 4515
voter 29 2008 1.69 |35 2827 2.88 |35 2827 2.88 |34 3328 3.29 |28 1958 1.60 |39 3150 3.57 |22 1562
Ave. ratio [143 1.05 137 [1.04 152 144 [106 151 146 [173 136 200|116 117 135|118 190 207|100 100

ADP: normalized area-delay product relative to CHOP; delay: circuit delay; area: circuit area.

optimization methods, TABLE III presents the results after
6-LUT mapping [40], which offers a closer approximation of
the real-world performance in the implementation of integrated
circuits. The objective of 6-LUT mapping is to minimize the
ADP, i.e., the product of circuit area and delay. Similarly, the
ADP values in TABLE III are normalized for comparison.
Notably, consistent with the results in TABLE II, the MIG-
based method achieves the best optimization outcomes among
the four single logic representation methods. The difference is
that hybrid optimization methods show better results in 6-LUT
mapping, especially LSOracle and CHOP.

Overall, CHOP continues to maintain a leading position
relative to the baselines. Specifically, CHOP achieves ADP
reductions of 19.48%, 17.28%, 18.62%, 30.16%, 17.99%,
and 36.42% on average compared with AIG, MIG, XMG,
XAG, LSOracle, and HeLO, respectively. In addition, there
are two primary reasons why HeLO performs poorly in 6-
LUT mapping. First, the framework targets logic optimization,
and the input of technology mapping in [18] directly sources
from the results of logic optimization. Second, HeLO’s circuit
partitioning method has significant shortcomings. Specifically,
unlike CHOP, HeLO’s initial partitioning method extends from
POs to PIs without considering the situation of other cones.
This makes HeLO’s optimization results depend to a certain
extent on the order of processing POs during the initial
partitioning.

Notably, in circuits where LSOracle demonstrates subopti-
mal performance, CHOP consistently excels. This discrepancy
arises because LSOracle aggregates edges with higher weights
for partition, which can sometimes lead to the grouping of
vertices with significantly different logic levels, potentially
resulting in suboptimal performance in certain circuits. This
observation further validates our partition method presented in
Section IV-B2. This disparity further motivates our approach:
rather than relying on a single optimization method across

all designs, we aim to tailor the optimization strategy to the
specific characteristics of each circuit or subgraph cluster.
By leveraging structural and functional diversity within the
design, our method seeks to achieve a better trade-off between
optimization quality and generalization.

LSOracle [17] 0 HeLO [18] | B cHOP

4
E 10
<
Q
w
20 | I
2) N I I |
% 10 il
Q
£
g L mappmg
& 100 U alnyl gy
SEE9 D o
STSTISeSy S Reess
& © < § &5’ IS8 &
oy IFFEF & Logic
g \ ¢ £ NS
< @SQ I $ optimization

Fig. 8. Comparison of normalized runtime among different optimiza-
tion methods for logic optimization and 6-LUT mapping, respectively.

E. Runtime

The runtime comparison between CHOP and two state-of-
the-art hybrid optimization methods is presented in Fig. 8. On
smaller circuits, CHOP does not exhibit a noticeable speed
advantage, primarily because the selected model introduces
a fixed runtime overhead that dominates when the circuit
size is small. This overhead mainly stems from the cost of
subgraph extraction, feature encoding, and inference time of
the learning-based components. However, as the circuit size
increases, these fixed costs become less significant relative

to the overall runtime, and the scalability of CHOP becomes
more evident.

Overall, CHOP shows high efficiency, with average speeds
of 1.92x that of LSOracle and 2.98x that of HeLO for logic
optimization, as well as 1.78x and 2.48x for LUT mapping.
This substantial reduction in runtime highlights CHOP’s abil-
ity to efficiently handle large-scale designs. Furthermore, since
CHOP relies on pre-trained models for inference rather than
costly iterative optimization, its performance is more stable
and predictable across different circuit instances. These results
collectively demonstrate the runtime efficiency and scalability
of CHOP, making it particularly suitable for large and complex
circuits where traditional methods may struggle with high
computational overhead.

VI. CONCLUSION

This paper proposed CHOP, a novel framework that fun-
damentally advances hybrid logic synthesis through vertex-
level feature extraction and optimization-aware clustering. The
key innovation lies in shifting from the traditional “partition-
then-predict” paradigm to a “predict-then-partition” approach,
enabling more effective alignment between circuit structures
and optimization strategies. CHOP’s hierarchical clustering
algorithm, guided by both structural and functional features,
demonstrates superior performance across multiple metrics.

The experimental results validate CHOP’s effectiveness. For
logic optimization on the EPFL benchmark, CHOP achieved
average NDP reductions of 16.07% and 12.39% compared
with LSOracle and HeLO, with 1.92x and 2.98x speedup,
respectively. For 6-LUT mapping, CHOP achieved average
ADP reductions of 17.99% and 36.42%, with 1.78x and 2.48x
speedup, respectively.

Future work will focus on extending CHOP to handle
larger industrial circuits, integrating more sophisticated neural
architectures for vertex feature extraction, and exploring ap-
plications to other EDA tasks such as placement and routing
optimization.

REFERENCES

[1] E. Testa, M. Soeken, L. G. Amar, and G. De Micheli, “Logic synthesis
for established and emerging computing,” Proceedings of the IEEE, vol.
107, no. 1, pp. 165-184, 2019.

[2] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, “MIS:
A multiple-level logic optimization system,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 6, no. 6, pp. 1062-1081, 1987.

[3] L. Hellerman, “A catalog of three-variable or-invert and and-invert
logical circuits,” IEEE Transactions on Electronic Computers, vol. EC-
12, no. 3, pp. 198-223, 1963.

[4] L. Amard, P-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in ACM/IEEE Design Automation Conference (DAC), 2014.

[5] G. Meuli, M. Soeken, and G. Micheli, “Xor-And-Inverter graphs for
quantum compilation,” npj Quantum Information, vol. 8, 12 2022.

[6] W. Haaswijk, M. Soeken, L. Amaru, P-E. Gaillardon, and
G. De Micheli, “A novel basis for logic rewriting,” in IEEE/ACM Asia
and South Pacific Design Automation Conference (ASPDAC), 2017, pp.
151-156.

[71 A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis,” in ACM/IEEE
Design Automation Conference (DAC), 2006, pp. 532-535.

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

H. Riener, W. Haaswijk, A. Mishchenko, G. Micheli, and M. Soeken,
“On-the-fly and DAG-aware: Rewriting boolean networks with exact
synthesis,” in IEEE/ACM Proceedings Design, Automation and Test in
Eurpoe (DATE), 03 2019, pp. 1649-1654.

W. Haaswijk, M. Soeken, L. Amaru, P-E. Gaillardon, and G. Micheli,
“A novel basis for logic rewriting,” in IEEE/ACM Asia and South Pacific
Design Automation Conference (ASPDAC), 01 2017, pp. 151-156.

A. T. Calvino and G. De Micheli, “Scalable logic rewriting using
don’t cares,” in IEEE/ACM Proceedings Design, Automation and Test
in Eurpoe (DATE), 2024, pp. 1-6.

S.-Y. Lee and G. D. Micheli, “Heuristic logic resynthesis algorithms
at the core of peephole optimization,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 42, no. 11,
pp. 3958-3971, 2023.

L. Amard, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, J. Olson,
R. Brayton, and G. De Micheli, “Improvements to boolean resynthesis,”
in [EEE/ACM Proceedings Design, Automation and Test in Eurpoe
(DATE), 2018, pp. 755-760.

A. M. R. Brayton and A. Mishchenko, “Scalable logic synthesis using a
simple circuit structure,” in IEEE/ACM International Workshop on Logic
Synthesis, vol. 6, 2006, pp. 15-22.

H. Riener, E. Testa, L. Amaru, M. Soeken, and G. De Micheli,
“Size optimization of MIGs with an application to QCA and STMG
technologies,” in IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), 2018, p. 157-162.

S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli,
“A simulation-guided paradigm for logic synthesis and verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 41, no. 8, pp. 2573-2586, 2022.

L. Amarid, P-E. Gaillardon, and G. De Micheli, “MIXSyn: An effi-
cient logic synthesis methodology for mixed XOR-AND/OR dominated
circuits,” in IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC), 2013, pp. 133-138.

W. L. Neto, M. Austin, S. Temple, L. Amaru, X. Tang, and P.-E.
Gaillardon, “LSOracle: a logic synthesis framework driven by artificial
intelligence: Invited paper,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2019.

Y. Pu, F. Liu, Z. He, K. Zhu, R. Fu, Z. Wang, T.-Y. Ho, and B. Yu,
“HeLO: A heterogeneous logic optimization framework by hierarchical
clustering and graph learning,” in ACM International Symposium on
Physical Design (ISPD), 2025, p. 116-124.

R. Fu, R. Zhang, Z. Zheng, Z. Shi, Y. Pu, J. Huang, Q. Xu, and T.-Y.
Ho, “Late breaking results: Hybrid logic optimization with predictive
self-supervision,” in ACM/IEEE Design Automation Conference (DAC),
2025.

S. Schlag, T. Heuer, L. Gottesbiiren, Y. Akhremtsev, C. Schulz, and
P. Sanders, “High-quality hypergraph partitioning,” ACM Journal of
Experimental Algorithmics, vol. 27, 2023.

L. Amaru, P.-E. Gaillardon, and G. De Micheli, “The EPFL combina-
tional benchmark suite,” in IEEE/ACM International Workshop on Logic
Synthesis, 2015.

S. Kauffman, “Metabolic stability and epigenesis in randomly con-
structed genetic nets,” Journal of Theoretical Biology, vol. 22, no. 3,
pp. 437-467, 1969.

S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3, pp. 75-174, 2010.

M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, p. 026113, 2004.
V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, 2008.
V. A. Traag, L. Waltman, and N. J. van Eck, “From Louvain to Leiden:
guaranteeing well-connected communities,” Scientific Reports, vol. 9,
no. 5233, pp. 2045-2322, 2019.

M. Li, S. Khan, Z. Shi, N. Wang, H. Yu, and Q. Xu, “Deepgate: Learning
neural representations of logic gates,” in ACM/IEEE Design Automation
Conference (DAC), 2022, pp. 667-672.

Z. Shi, H. Pan, S. Khan, M. Li, Y. Liu, J. Huang, H.-L. Zhen,
M. Yuan, Z. Chu, and Q. Xu, “Deepgate2: Functionality-aware circuit
representation learning,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 1EEE, 2023.

Z. Shi, M. Li, S. Khan, L. Wang, N. Wang, Y. Huang, and Q. Xu,
“Deeptpi: Test point insertion with deep reinforcement learning,” in
IEEE International Test Conference (ITC). 1EEE, 2022, pp. 194-203.
S. Khan, Z. Shi, M. Li, and Q. Xu, “DeepSeq: Deep sequential circuit
learning,” arXiv preprint arXiv:2302.13608, 2023.

(31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

M. Li, Z. Shi, Q. Lai, S. Khan, S. Cai, and Q. Xu, “On EDA-driven
learning for SAT solving,” in ACM/IEEE Design Automation Conference
(DAC). 1EEE, 2023.

Z. Shi, T. Tang, S. Khan, H.-L. Zhen, M. Yuan, Z. Chu, and
Q. Xu, “EDA-driven preprocessing for SAT solving,” arXiv preprint
arXiv:2403.19446, 2024.

N. Wu, Y. Li, C. Hao, S. Dai, C. Yu, and Y. Xie, “Gamora: Graph
learning based symbolic reasoning for large-scale boolean networks,” in
ACM/IEEE Design Automation Conference (DAC). I1EEE, 2023.

C. Deng, Z. Yue, C. Yu, G. Sarar, R. Carey, R. Jain, and Z. Zhang,
“Less is more: Hop-wise graph attention for scalable and generalizable
learning on circuits,” arXiv preprint arXiv:2403.01317, 2024.

J. Liu, J. Zhai, M. Zhao, Z. Lin, B. Yu, and C. Shi, “PolarGate: Breaking
the functionality representation bottleneck of and-inverter graph neural
network,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2024.

Z. Shi, Z. Zheng, S. Khan, J. Zhong, M. Li, and Q. Xu, “DeepGate3:
Towards scalable circuit representation learning,” in IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), 2025.

Z. Wang, C. Bai, Z. He, G. Zhang, Q. Xu, T.-Y. Ho, B. Yu, and Y. Huang,
“Functionality matters in netlist representation learning,” in ACM/IEEE
Design Automation Conference (DAC), 2022, pp. 61-66.

M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, S.-Y. Lee, A. Tempia Calvino, and G. Marakkalage,
Dewmini Sudara De Micheli, “The EPFL logic synthesis libraries,”
2022, arXiv:1805.05121v3.

F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational bench-
mark circuits and a target translator in Fortran,” in IEEE International
Symposium on Circuits and Systems (ISCAS), 1985, pp. 677-692.

G. Liu and Z. Zhang, “A parallelized iterative improvement approach
to area optimization for LUT-based technology mapping,” in ACM
International Symposium on Field-Programmable Gate Arrays (FPGA),
2017.

Rongliang Fu received his BS degree in software
engineering from the Northwestern Polytechnical
University, Xi’an, China, in 2018 and his MS degree
in computer science and technology from the Uni-
versity of Chinese Academy of Sciences, Beijing,
China, in 2021. He is currently studying for his Ph.D
degree in the Department of Computer Science and
Engineering, The Chinese University of Hong Kong.
His research interests include electronic design au-
tomation and computer architecture.

Ran Zhang received his B.S. degree from North-
eastern University, Shenyang, in 2023. He is cur-
rently a master’s student at the University of Chinese
Academy of Sciences (UCAS), under the Institute
of Computing Technology, Chinese Academy of
Sciences. His research interests include electronic
design automation and computer architecture.

Ziyang Zheng (Student Member, IEEE) is currently
a third-year Ph.D. student in the CURE Lab at
The Chinese University of Hong Kong, where he
is advised by Prof. Qiang Xu. He received his
Bachelor’s degree in Data Science and Big Data
from Harbin Institute of Technology (Shenzhen),
China. His research interests include Multimodal
Learning, Diffusion Models, and Al applications in
Electronic Design Automation (EDA).

>

Zhengyuan Shi is a final-year PhD candidate at
The Chinese University of Hong Kong. His research
interests include Al for EDA and large circuit mod-
els. He has published over 20 papers in leading
EDA conferences, including DAC and ICCAD, and
received Best Paper nomination awards at DAC 2022
and ASP-DAC 2025. He got his B.Eng. degree
with the Presidential Scholarship from Shandong
University in 2021.

Yuan Pu received the B.S. degree in computer
science from The Chinese University of Hong Kong,
Hong Kong, in 2022. He is now a second-year Ph.D.
Student at the Department of Computer Science and
Engineering, the Chinese University of Hong Kong
(CUHK), supervised by Prof. Bei YU since 2023
Fall. His research interest includes Combinatorial
Algorithms/Al in EDA.

Junying Huang received her Ph.D. degree in mi-
croelectronics and solid-state electronics from the
University of Chinese Academy of Sciences in 2016.
Currently she is an associate professor with the
Department of High-throughput Computer Research
Center, Institute of Computing Technology, Chinese
Academy of Sciences. Her research interests include
superconductive RSFQ logic, computer architecture,
electronic design automation, and hardware security.

Bei Yu (M’15-SM’22) received the Ph.D. degree
from The University of Texas at Austin in 2014.
He is currently a Professor in the Department of
Computer Science and Engineering, The Chinese
University of Hong Kong. He has served as TPC
Chair of ACM/IEEE Workshop on Machine Learn-
ing for CAD, and in many journal editorial boards
and conference committees. He received ten Best
Paper Awards from IEEE TSM 2022, DATE 2022,
ICCAD 2021 & 2013, ASPDAC 2021 & 2012,
ICTAI 2019, Integration, the VLSI Journal in 2018,

ISPD 2017, SPIE Advanced Lithography Conference 2016, and many other
awards, including DAC Under-40 Innovator Award (2024), IEEE CEDA
Ernest S. Kuh Early Career Award (2022), and Hong Kong RGC Research
Fellowship Scheme (RFS) Award (2024).

Qiang Xu (Senior Member, IEEE) received the B.E.
and M.E. degrees from Beijing University, Beijing,
China, in 1997 and 2000, respectively, and the Ph.D.
degree from McMaster University, Hamilton, ON,
Canada, in 2005. He is a Professor of Computer Sci-
ence and Engineering with The Chinese University
of Hong Kong, Hong Kong. His research interests
include electronic design automation, trusted com-
puting, and representation learning. He is currently
serving as an Associate Editor for IEEE Transactions
on Computer-Aided Design of Integrated Circuits

and Systems and Integration, the VLSI Journal.

Tsung-Yi Ho (F°24) is a Professor in the Depart-
ment of Computer Science and Engineering, The
Chinese University of Hong Kong (CUHK). He
received his Ph.D. in Electrical Engineering from
National Taiwan University in 2005. His research
interests include several areas of computing and
emerging technologies, especially in the design au-
tomation of microfluidic biochips. He was a recipient
of the Best Paper Award at the IEEE Transactions
on Computer-Aided Design of Integrated Circuits
and Systems in 2015. Currently, he serves as the

VP Conferences of IEEE CEDA, and the Executive Committee of ASP-DAC
and ICCAD. He is a Distinguished Member of ACM and a Fellow of IEEE.

