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Abstract—Although 3D IC integration offers a promising path
to alleviate interconnect bottlenecks in 2D designs, efficient 3D
floorplanning remains challenging due to its increased spatial
complexity. Prior approaches that directly extend 2D represen-
tations into 3D suffer from exponential solution spaces, while
pre-partitioning strategies constrain the global optimization land-
scape by fixing block-to-die assignments early. As a result, both
approaches not only hinder comprehensive exploration of the 3D
design space, but also overlook critical 3D, specific characteristics
such as inter-die communication latency, which directly impact
system performance but are often abstracted away in simplified
2D-extended models. To address these challenges, we propose
GREAT3D, a partitioning-free 3D floorplanning framework that
jointly optimizes block floorplan and die assignment without
relying on predefined die partitioning. By a two-stage 3D SDP
optimization and 2D refinement, GREAT3D effectively minimizes
wirelength and latency under outline constraints. Experimental
results on GSRC benchmarks show that Great3D consistently
achieves lower wirelength than the baselines, with up to 60%
reduction on large-scale designs. Furthermore, the method
maintains competitive runtime performance while demonstrating
better scalability and robustness across diverse benchmark sizes.
These results establish Great3D as a scalable and effective
partitioning-free solution for high-quality 3D IC floorplanning.

Index Terms—3D IC, 3D Floorplanning, Partitioning-free,
Semi-definite Programming

I. INTRODUCTION

While transistor scaling has upheld Moore’s Law, interconnect
scaling lags behind, making routing delay the key bottleneck in
modern two-dimensional (2D) integrated circuits (ICs) [1]. To
address this, three-dimensional (3D) integration stacks device
layers vertically, transforming long intra-die wires into short
inter-die connections and increasing integration density [2].
Advances in fine-pitch hybrid bonding enable TSV-free, low-
parasitic face-to-face (F2F) interconnects, accelerating 3D
IC adoption in commercial designs [3]-[5]. These benefits,
however, come with new physical-design challenges: designers
must manage inter-die connectivity with non-uniform com-
munication costs and explore an explosively larger placement
solution space [2]. Among all backend stages, floorplanning
sets the relative positions and die assignments of blocks, which
dominate wirelength and communication latency in 3D stacks.
Consequently, efficient 3D floorplanning has become a critical
problem in modern IC design.

Unlike 2D floorplanning, which determines block locations
within a single planar layer, 3D floorplanning must simul-
taneously determine both block location and die assignment
across multiple vertically stacked tiers. This vertical dimen-
sion introduces fundamental new complexities, including z-
axis feasibility, cross-tier density legality, and non-uniform
communication latency. In particular, inter-die links typically

Fig. 1 Comparison of 3D floorplans before and after inter-die
optimization. Our method (right) better utilizes vertical links and
achieves reduced area under identical outline constraints.

incur higher delays than intra-die wires due to bonding and
stack-level constraints, which must be accounted for during
physical layout. Hence, existing 2D floorplanning methods are
not directly applied to 3D floorplanning.

To address these 3D-specific challenges, several 3D floor-
planning methods have been proposed in recent literature.
Existing 3D floorplanning methods can be grouped into two
categories, each making restrictive assumptions that limit their
scalability and solution quality. The first category [6]-[9]
extends 2D representations into 3D by embedding die assign-
ment directly into the placement structure. For example, 3D
slicing trees [6] enforce hierarchical layer partitioning, while
grouped sequence pairs [7] encode cross-layer placement.
FlexPlanner [9] uses a graph-based representation trained
on prior layout data, but its performance heavily depends
on the quality and generalizability of the training dataset,
which limits its applicability to unseen architectures. Although
these methods retain flexibility, they suffer from exponential
solution space growth and entangled optimization objectives.
As a result, they rely on slow metaheuristics and cannot
easily decouple the die assignment from physical placement
to reason about inter-die latency.

The second category [10]-[12] adopts a partitioning-first
paradigm. These methods decompose the 3D task into sequen-
tial 2D subproblems through pre-processing. Using such as
Fiduccia Mattheyses (FM) [12], [13] and spectral partition-
ing [14] for efficient block-to-die partitioning, they apply 2D
floorplanning on each die and stack the results. This improves
scalability but imposes structural constraints, disconnecting
die assignment from floorplan optimization and preventing
joint reasoning about inter-die connectivity and latency min-
imization. Therefore, these methods still fall short of fully
addressing the complexities introduced by vertical stacking,
which is the most important structure in 3D ICs.

To address these problems, we propose GREAT3D, a unified
framework that jointly optimizes block floorplan and die
assignment without partitioning. Unlike prior work, GREAT3D
directly explores native 3D solutions without pre-processing



or restrictive intermediate formats. As illustrated in Fig. 1,
baseline layouts (left) constrain highly connected modules to
a single tier, which limits vertical integration and leads to
inefficient floorplan utilization. Our adjustment (right) remaps
these nets across tiers, enabling shorter inter-die connections
and better module distribution. These limitations highlight the
need for partitioning-free, holistic 3D optimization. Overall,
our contributions are as follows:

« We introduce a native-3D floorplanning method that
jointly performs block floorplanning and die assignment
within a unified optimization framework.

o Our multi-objective formulation balances interconnect
cost and die utilization, producing compact layouts with
reduced wirelength compared to state-of-the-art.

o The framework integrates latency-aware modeling, sup-
porting early-stage performance estimation and design
space exploration at the system level.

II. PRELIMINARIES
A. 3D IC

Modern 3D integration falls into three categories [15]-[17]: (1)
TSV-based, (2) monolithic, and (3) face-to-face (F2F) hybrid
bonding. TSV-based integration [18] suffers from parasitics
and area overhead, suiting sparse inter-die connections. Mono-
lithic 3D ICs [19] require sequential processing, increasing
cost and reducing yield. F2F bonding [20]-[22] offers high-
density, low-parasitic interconnects by aligning pre-fabricated
dies at the top metal layers. It supports die heterogeneity and
reuse, gaining traction in modern 3D ICs [23], [24]. Our
proposed GREAT3D naturally applies F2F-bonded systems
and to quantify performance, we adopt a CPI-based latency
model [25]. The minimize the average latency, the objective
is defined as Equation (1).

H(S, L, MP) = CPly, + a1 - (latyy — latg,), (1)

where the latency laty,; = (S, L) is the Frobenius inner
product between the structure matrix S = Zp N, and latency
matrix L € R"*". Here, IV, is the connectivity matrix for net
ep. Static CPI is modeled as CPlLy, = a3 - MP + (1; delay as

B2 - wirelength,, ,, where MP models system-level constraints.

B. 3D Floorplan

In floorplanning, communication cost is commonly estimated
using the half-perimeter wirelength (HPWL) model. In 2D,
the HPWL of a net e; connecting a set of blocks S; is defined
as Equation (2), which is widely adopted due to its simplicity
and effectiveness [26], [27]. In practical optimization frame-
works, multi-pin nets are commonly decomposed into pairwise
interactions to yield differentiable surrogate objectives [26].
We adopt such a pairwise formulation, defining a connectivity
matrix A°, where each entry Af; represents the aggregated
connection strength between blocks ¢ and j. This yields the
objective function expressed as the inner product between
connectivity and distance matrices as Equation (3).

WLap (e:) = max(xs) — min(zp) +max(yy) —min(y), (2)

W(A°, D) = (A°,D) = > Ay - Di;. 3)
2]

where D;; denotes the geometric square distance between
blocks ¢ and j. In 3D floorplanning, we naturally extend this
geometric interpretation into 3D Euclidean space.

C. Motivation

Unlike traditional 2D floorplanning tasks, 3D IC design in-
troduces heterogeneous communication patterns due to verti-
cal integration. Intra-die communication is short and dense,
whereas inter-die communication typically incurs higher cost
and is constrained by bonding technology. Prior works [7],
[11] often treat these two communication types uniformly by
extending the 2D HPWL metric into 3D space.

However, such formulations rely on discrete z-coordinate
values that serve more as die-level indicators than physical
geometric distances. To better reflect this heterogeneity, we
adopt a dual-level modeling strategy: we use 2D HPWL over
(z,y) coordinates to capture detailed intra-die placement qual-
ity, and incorporate inter-die communication cost explicitly
through a CPI-based system-level latency model [25]. These
two components are then unified into a single objective via
a weighted connection-distance formulation in Section II-D,
enabling joint optimization of physical floorplan compactness
and architectural communication latency.

D. Problem Formulation

Input:

o Netlist (V;, V), E): V,, = {b1,...,b,} contains blocks;
Vo = {p1,...,pm} are fixed pins; E = {eq,...,ex}
contains nets each connecting blocks and/or pins.

o Block parameters: Width w;, height h;, area a;, center
(w4, yi, z;); blocks must satisfy 7% < w; /h; < rmax,

o Design constraints: Bounding box (W, H), overlap toler-
ance €oyerlap, Optional F2F bonding regions B;.

Output:

e 3D floorplan (z;,y;,2;) of each block b;: x;,y; are
continuous planar coordinates; z; is the discrete die
assignment.

« Floorplan dimensions (W, H) per die and legal block
sizes (wj, h;) satisfying aspect ratio constraints.

 Net partitioning: FEiop, Epot; Einer-die induced by die as-
signments.

« Inter-die connection statistics: total count |Eiger.gic| and
computed density peys-

Constraints:

o Overlap: To ensure physical feasibility, blocks must not
overlap beyond a predefined tolerance €oyertap, Where
Overlap(b;, b;) measures the overlapping area between
blocks b; and b;.

Z Overlap(b;, b;) < €overtaps “)

i<j
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Fig. 2 Overview of the proposed GREAT3D optimization framework shown in Section III. The framework consists of two key components:
SDP-based optimization (Section III-A) and 2D refinement (Section I1I-B).

o Aspect ratio: Soft blocks must maintain specified aspect
ratio bounds denoted by i and e
) Vbz € Bsoft-

mln < < max 5
I, &)

« Fixed-outline: All blocks must reside within the layout
region, denoted by W, H, and both top die and bottom
die should have the same outline:

2 2 ©)
hi h,z
Oﬁyi—?, yri—ESH, Vb; € B.

o Hybrid bonding density: To capture this unique 3D
characteristic, we explicitly impose a bonding density
constraint that limits the number of vertical connections
per unit area.

|Eimer—die| < Pmax * AT €Agie- (7

where ppa.x denotes the maximum allowable inter-die
connection density under specific manufacture standards.

Objective:

Faced with the inputs and constraints mentioned above, we
need to take both the floorplan metrics and the characteristics
of 3D IC into consideration. Then a direct trade-off formula-
tion method can be used as follows:

350:(17,11,)W(AO,D)+MJ'C(S,L7MP)7 ®)

where W(-) is total wirelength, the typical metric for floor-
planning tasks [7], [11], [26], [27], and 3{(-) captures latency
cost [25], a metric specifically designed to address the chal-
lenges of 3D space by considering vertical stacking, die-to-
die communication, and inter-layer connectivity. © includes
all coordinates and die assignments, and p balances layout
compactness and inter-die efficiency.

min
o

After presenting the original objective function in Equa-
tion (8), we face the fundamental challenge of optimizing
two heterogeneous terms, W(E) and H(S, L, MP), which
cannot be directly unified. To resolve this, we decompose the
second term and introduce weighted components. We express

the objective as:

Fo=(L—p)- Y Ay-dy+p-> Sy Ly, O
2% 2]

where A° denotes the original connection matrix. To further

unify these terms, we construct a weighted connection matrix:

Aij :( ) AO +,u, SZJ >\1] (10)

Thus, following the procedure in Section II-B, let X € R"*3
represent the positions of the n modules in 3D space, with the
definition of Equation (10), we can rewrite the objective as

min IT:ZAijwdij:(A,D). (11)
»J

Finally, this unification converts the multi-objective optimiza-
tion into a single weighted connection-distance matching
problem and leverages the natural 3D structure of the 3D
floorplanning domain.

III. METHODOLOGY OF GREAT3D

As shown in Fig. 2, GREAT3D adopts a two-stage framework.
In contrast to prior methods that require netlist partition-
ing as a prerequisite, GREAT3D directly performs unified
die assignment and block floorplanning within a native 3D
solution space, enabling more globally optimal results. The
first stage, detailed in Section III-A, solves the unified ob-
jective Equation (11) in the 3D space to obtain preliminary
block placements, including their z-axis coordinates. These
coordinates naturally guide the die assignment by splitting
blocks between the top and bottom dies, providing inputs for
the 2D LBFGS refinement described in Section III-B.

A. 3D SDP Optimization

Following the notations in Section II, the Gram matrix is
defined as G = XXT. Thus, the objective function is
rewritten as Equation (12).

n n
=> > A (Gi+ Gy —

i=1j=1
Based on [26], we construct a matrix B, to simplify the cal-
culation of the matrix according to the mathematical transfor-
mation as Equation (13). This definition clearly distinguishes

2Gy;) . (12)



the diagonal elements (which involve aggregated in- and out-
connections of vertex ¢) from the off-diagonal ones (which are
simply scaled by a constant). The Z is defined as Equation (14)

DA+ Ay, ifi=j,
Bij =14 k=1 13)
—2A,j, if i £ j.
Z — IgXS X-?)TXH c S3+n (14)
Xn><3 ann o

where I3 3 is a 3 x 3 identity matrix that serves as the upper-
left block of Z, preserving the identity structure in this part
of the matrix. Here, the construction needs a rank constraint,
which is further explained in Equation (20). G, x, is a sym-
metric positive semidefinite matrix of dimensions n xn, which
forms the lower-right block of Z and captures additional
relationships or dependencies among the n elements. The top-
3 eigenvectors of the symmetric matrix Z are computed based
on the Courant-Fischer principle, capturing the dominant spa-
tial directions for recovering the 3D coordinates. Then the
optimization is carried out by alternately solving two coupled
subproblems. At each iteration, the updates of the solution
variables are defined by the following abstract formulations
shown in Equation (15) and Equation (16).

Z0H) =y (20, W 1y, ey), (15)
WERD = 9y (W), ZHD; £, €,), (16)
f1(2) = (B.G(2)) + (W". Z), {an
f2(W) = (W, ). (18

where f1 in Equation (17) and f> in Equation (18) denote the
respective objective functions, and C;, Co represent the asso-
ciated constraint sets. The superscript k£ indicates the current
iteration index, and (k + 1) denotes the updated solution in
the subsequent step. After solving the SDP, we recover the
3D layout by performing spectral decomposition on the Gram
matrix G = VAV . The top-3 eigenvectors V3 € R"*3,
scaled by the square roots of their eigenvalues Xsqrt € R3*3,
yield the recovered coordinates X = V33sqrt, each row
of X corresponds to the spatial position of a module in 3D
Euclidean space. The objective function of Subproblem 1 is
defined as Equation (17), where G(Z) encodes the placement-
induced distances. The second term is a regularization en-
couraging alignment with a fixed inter-die proximity matrix
W, controlled by parameter .. Subproblem 2 refines W by
aligning it with the current layout solution Z*. To ensure non-
overlapping placement, the pairwise distance matrix Z must
satisfy Equation (19).
Dyj = Zii+Zj;—2Zi; > (ritr;)?, Vi#j,
0<W=<1I Trace(W)=n (20)
which ensures that any two blocks are separated by at least the
sum of their radii and that Z remains positive semidefinite. In
the dual formulation, W is constrained within a normalized
semidefinite cone shown in Equation (20), where n is block

Z =0, (19)

Algorithm 1 2-D Refinement via L-BFGS-B

Input: Coordinates X from SDP in Section III-A
Output: Refined coordinates X*

1: obj < UPDATEOBJECTIVE();

2: X + Xp;

3: while convergence criteria unmet do

> using Equation (21)
> initialization

4: g < UPDATEGRADIENT(); > using Equation (24)
5: p < UPDATEDIRECTION(); > via Equation (27)
6: n < UPDATESTEP(); > using Equation (28)
7 X+ X+np; > position update
8: UPDATEHISTORY(); > using Equation (29)
9: if UPDATETRIGGER(X) then

10: UPDATEPARAMETERS();

11: end if

12: end while

number. These constraints ensure the eigenvalues of W lie be-
tween (0,1) and that the overall spectral weight is normalized.

Finally, the SDP-based stage provides a globally informed
3D layout by minimizing a spectral relaxation of the unified
objective (11), yielding block positions X € R™*3,

B. 2D Refinement

Building on the global 3D solution in Section III-A, we
further improve die layout quality through a second-stage
refinement that operates within each die separately via L-
BFGS-B procedure, which is shown in Algorithm 1.

We first construct the composite objective function obj =
f(X) using Equation (21), which integrates wirelength and
spacing terms (line 1). Then the optimization is initialized with
X + X, where X is the projected 2D coordinate set from
the SDP solution described in Section III-A (line 2). While
convergence criteria are not met (line 3), we first compute the
gradient g = V f(X) using Equations (24) and (25) (line 4).

Next, a search direction p is then determined using the
L-BFGS two-loop recursion [28], based on the current gra-
dient g and memory history M [29] (line 5). To ensure
sufficient descent, a step size 1 is computed via Armijo
backtracking line search [30], satisfying the sufficient decrease
condition Equation (28) (line 6). The block positions are then
updated as X < X + np (line 7). After the update, the
function UPDATEHISTORY() appends the latest (si,yx) pair
as defined in Equation (29) (line 8). If dynamic update criteria
PARAMETERUPDATECONDITION(X) are satisfied (line 9),
we adaptively update the penalty coefficient 8 and norm
mixing ratio a3 to improve convergence and maintain spacing
robustness (line 10). The iteration continues until a stopping
criterion is triggered, and the final intra-die placement X* is
returned (line 12).

Following the introduction of the framework of this stage,
we then give an illustration of the details.

After the SDP in Section III-A, the objective function in
this stage should composite wirelength objective augmented
with pairwise soft-spacing constraints, so it is defined as
Equation (21).

)= Ay (xix)) + B fren(x). 2D

1<J

d(xi, x;5) = az|x; — x;[[1 + (1 — az)[|x; — %2, (22
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Fig. 3 Illustration of the 2D refinement strategy. (a) Alternating

LI and L2 gradients improve convergence. (b) Soft spacing penalty

maintains minimum block separation requirements.

Fren() = 37 [max (0, & — [x; —x,]12)]". (23)
i<j

where x; = [z;,y;]" denotes the 2D position of block i
acquired from the procedure in Section III-A for each die,
and 8 > 0 is a regularization weight controlling the strength
of spacing penalties. To enhance convergence and escape
poor local minima, we adopt a norm-alternating strategy
within the potential function Equation (22), where a scalar
as € [0,1] balances Manhattan and Euclidean terms. This
composite form leverages the strengths of both norms, as
previously shown effective in [26]. To maintain legal spacing
between block pairs, we incorporate a soft penalty term fpen
defined as Equation (23), where dff“ > 0 denotes the
minimum spacing constraint between blocks 7 and j derived
from geometric constraints in Section II-D. As illustrated in
the right portion of Fig. 3(b), this quadratic penalty softly
discourages overlaps without introducing hard constraints. The
left portion of Fig. 3(a) visualizes our alternating-norm descent
strategy, where L1 and L2 gradients are switched iteratively to
improve search direction quality during optimization. With the
objective function defined in Eq. (21), we compute gradients
as Equation (24).

axz =3 Ay Vid(xi, %) 28> Ay ” p— _” , (24)
J#i J#i
vi(b(xiaxj) = a3'Sign(Xi_Xj)+(1_a3) || - ||27 (25)
X — X
Aij = max (07 d?;—in — sz — X]'”Q) . (26)

Then, we define the update procedure shown in Equa-
tion (27), where Hj is the L-BFGS approximation of the
inverse Hessian, computed using the two-loop recursion de-
scribed in [29]. This procedure recursively updates the direc-
tion using a limited memory of past updates.

p=—H,Vf(Xy), (27

Next, the Armijo backtracking line search [30] to compute
a valid step size 7 is shown by Equation (28). The step is
accepted only if it satisfies the sufficient decrease condition
(line 6-7):

fX+np) < f(X)+c-n- VX)) p. (28)
sp =X —Xp—1, Yk = VI (Xi) = VI Xp—1). (29

where ¢ € (0, 1) is a small constant (e.g., 10~%). The optimizer
then updates the block coordinates via X < X + np. After

each update, the function UPDATEHISTORY appends the new
(sk,yr) pair. And we discards the oldest pair if the memory
limit m is exceeded. These updates (line 8) enable L-BFGS to
efficiently approximate second-order curvature without storing
full Hessians. Finally, we monitor a set of dynamic refine-
ment (line 9-11) via PARAMETERUPDATECONDITION(X),
and adapt hyperparameters accordingly. Specifically, if any
pairwise spacing violation exceeds a threshold, the penalty
weight 3 is increased to enforce tighter spacing control. Simi-
larly, the L1-L2 mix coefficient a3 is adjusted periodically to
enhance convergence. The optimization loop continues until
convergence criteria are met, such as a small gradient norm
or a maximum number of iterations. The refined layout X* is
returned as the output for Great3D framework, which is also
the solution of the unified objective shown as Equation (11)
for the 3D IC floorplanning problem proposed in Section II-D.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup and Baseline Setup

All experiments are conducted using benchmarks from the
GSRC benchmark suite [33], with the same of [26], [27].
The proposed 3D floorplanning algorithm is implemented in
Python 3.11 and executed on a Linux workstation running
Ubuntu 22.04 LTS, equipped with dual Intel Xeon Gold 6426Y
processors and 256 GB RAM. The following 6 baseline meth-
ods mentioned in Section I are evaluated for comparison: (1)
FM+AR, which combines the FM partitioning algorithm [13]
with the AR 2D floorplanner [27]; (2) FM+Li, using FM
partitioning and Li’s 2D optimizer [26]; (3) Spectral+AR,
using spectral partitioning [14] with AR [27]; (4) Spectral+Li,
combining spectral partitioning with Li’s floorplanner [26]; (5)
GSP, a Grouped Sequence Pair-based 3D floorplanner [7]; and
(6) TA3D, a thermal-aware 3D planner using smoothed HPWL
and FM-style optimization [11].

B. Preformance Comparison

TABLE II compares GREAT3D with six baselines across
five GSRC testcases, reporting both wirelength and runtime.
Great3D already outperforms all state-of-the-art baselines
in wirelength while keeping runtime competitive. On the

TABLE I Parameter Settings.

Parameter | Value | Ref. || Parameter |  Value | Ref.
a 5x 1074 [31] s 1.8 x 10~ | [31]
B1 1.1 x 1071 [31] MP 2.4 x 101 | [31]
CPlstq | 1.532 x 1073 | [25] Bo 9.8 x 10 | [32]
v =3 FM+AR E8 FM+Li 3 Spectra+-AR B3 Spectral+Li
0.4 =3 GSP 33 2021 TVLSI @8 Ours
0.3
o
© 0.2
0.1+
0.0~
n50 nlOO n200
Testcase

Fig. 4 Normalized Cycle-per-instruction (CPI), reporting H compar-
ison on the GSRC block benchmarks.
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TABLE II Experimental results on GSRC benchmarks [33] with runtime values doubled. Wirelength is measured in pm and runtime in seconds.

Test | FM [12]+AR [27] | FM [12]+Li [26] | Spectral [14]+AR [27] | Spectral [14]+Li [26] | GSP [7] | TA3D [11] |  Great3D (ours)
‘ Wirelength  Time ‘ Wirelength  Time ‘ ‘Wirelength Time ‘ Wirelength ~ Time ‘ Wirelength  Time ‘ Wirelength  Time ‘ Wirelength  Time
n10 43223 6.72 48881 2.16 24571 5.04 28020 2.08 36444 7.62 41166 41.1 23415 17.12
n30 84456 13.84 88703 5.68 67193 15.68 72048 10.00 100818 41.86 79429 55.76 56542 252
n50 217731 2144 | 219508 18.32 144133 32.56 147835 18.82 174368 109.74 | 203847  159.06 | 119495  42.88
n100 402324 37.04 | 388336 102.16 | 268341 45.36 259307  107.84 | 385398 351.9 373565 16194 | 166792  91.92
n200 880486  130.16 | 852036 107432 | 446443 115.04 408192 110504 | 397594  1360.86 | 832867  772.84 | 345099  209.68
Avg. ratio | 2.025 0493 | 2058 1403 | 1269 0.544 | 1289 1480 | 1652 2997 | 1.904 2754 | 1.000 1.000

five GSRC benchmarks, its average normalised wirelength is
1.45%. In conclusion, while Baseline 1-4 may run slightly
faster, all methods complete within acceptable runtime limits.
Their early-stage partitioning severely handicaps their ability
to optimize, resulting in significantly worse outcomes. Be-
sides, Baseline 5 and 6 adopt stacking strategy along the
z-axis, which leads to an exponential explosion in the 3D
search space. This not only causes longer runtimes, often ex-
ceeding ours, but also fails to deliver better quality. Whereas,
GREAT3D, maintains competitive runtime while consistently
achieving significantly better results. This demonstrates that
our method consistently achieves the best HPWL in Section II
among all evaluated approaches.

Then we use Equation (1), following the parameters shown
in TABLE I, to calculate the generalized CPIs as illustrated
in the Fig. 4. This figure contrasts the CPI obtained by
our GREAT3D framework with six state-of-the-art baselines.
Because GREAT3D co-optimizes die assighment and block
placement, it shortens the critical cross-die paths captured by
L while simultaneously minimizing wirelength, ;. As a result,
our method lowers CPI by 8.4—15.7% across all benchmarks
and delivers an average 11.2% improvement over the closest
competitor (Spectral+Li, baseline 4), clearly demonstrating
the performance benefit of a latency-aware native 3D flow,
getting the best performance regarding the latency metric in
Section II. To this end, the analytical Great3D has used the
unified objective in the natural 3D optimization space, to get
the best results in different metrics among different baselines.

As illustrated in Figs. 5 and 6, blocks are placed to optimize
inter-die connectivity while respecting die boundaries (red
dashed boxes). The complementary placement across dies

balances area usage and supports wirelength optimization,
with block IDs aiding cross-die reference and vertical connec-
tion analysis. Fig. 7 shows the normalized wirelength surface
under varying outline aspect ratios and inter-die connection
constraints. While theory suggests that elongating the outline
increases wirelength, we observe non-monotonic trends due
to the discrete nature of block configurations: some non-
square ratios yield better layouts. For a fixed aspect ratio,
reducing the inter-die constraint  limits cross-die placement
flexibility and often leads to suboptimal wirelength. Overall,
the surface reveals that tighter inter-die limits degrade layout
quality, while aspect ratio affects wirelength in a layout-
sensitive manner.

V. CONCLUSION

This paper presented a native 3D floorplanning framework
named GREAT3D, which combines partitioning, floorplanning,
wirelength minimization, and system-level latency modeling
within a unified analytical framework, eliminating separate
partitioning stages. The experiments underscore the necessity
of considering inter-die communication early in the design
process, especially for 3D integration. Future research will
focus on incorporating thermal management strategies into the
proposed optimization framework, enabling better design.
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